
Supercompiling Erlang

Master of Science Thesis

GÖRAN WEINHOLT

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, April 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he has obtained any necessary permission from this third party to let
Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Supercompiling Erlang

Göran Weinholt

© Göran Weinholt, April 2013.

Examiner: David Sands

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, April 2013

Abstract

Erlang is a programming language with excellent support for parallel and dis-
tributed programming. The functional programming paradigm with its higher-
order functions is used pervasively in Erlang, but code written in this style
suffers in performance. In this work a supercompiler for Erlang is presented
that can automatically eliminate higher-order functions and intermediate data
structures.

Sammanfattning

Erlang är ett programmeringsspr̊ak med utmärkt stöd för parallell och distri-
buerad programmering. Det är ett funktionellt spr̊ak där man ofta använder
högre ordningens funktioner, men tyvärr leder dessa till försämrad prestanda. I
det här arbetet presenteras en superkompilator för Erlang som automatiskt kan
eliminera högre ordningens funktioner och temporära datastrukturer.

Preface

I am meant to write this report so that it is readable by people with a background
similar to mine. This means identifying the concepts that are shared by me and
the reader, identifying those that are new to the reader, and then explaining
the new concepts in terms of the shared ones.

When I first started reading about supercompilation one of the problems I
had was with the notation used in the formal definitions. This formality is of
course excellent for its exactness and briefness (when used properly). But each
new subject seems to bring out a new notation; one which is strangely similar
to existing ones, yet different enough that the old rules do not apply.

They require a peculiar kind of thinking, a mixture between that of an
automaton and a human. Yet by not being as well defined as they appear,
often using natural language as an escape hatch or letting vital information be
implicit, they confound automatons and humans alike. Add some intimidating
Greek lettering and the picture is complete.

It is my hope that this report can serve to introduce a wider audience to su-
percompilation. I have tried to explain the new concepts with natural language
and examples. If after reading this report you find the concept of supercompi-
lation to be clear and simple, then I will have succeeded. Afterwards the formal
notation used in the literature should be much more useful to you.

Acknowledgements

The first person I want to thank is Karol Ostrovsky, who in a discussion with
David Sands brought up some issues he was having with Erlang. The second
person I want to thank is David Sands, who suggested that I should do a thesis
that addresses some issues Karol Ostrovsky was having with Erlang. Dave has
been a great support towards the end of my time at Chalmers and in particular
during this work. He is really the first person I should be thanking.

My thanks also to Peter A. Jonsson who created the supercompilation algo-
rithm that I have based my work on. Peter also answered the questions I had
about his research, for which I am grateful. Many thanks also to all those who
made his algorithm possible. It is not possible to write down a complete list of
the people who made this thesis possible. Thanks to Turchin, Aristotle, Newton
and many other great men of the mind.

v

Contents

1 Introduction 1
1.1 Source-level optimisation . 2

1.1.1 Partial evaluation . 3
1.1.2 Deforestation . 4
1.1.3 Supercompilation . 5

1.2 Delimitations . 5

2 Supercompilation 8
2.1 Overview of supercompilation . 9
2.2 The whistle . 10
2.3 Generalisation . 11
2.4 Supercompiling Erlang . 13
2.5 Summary . 13

3 Implementation 15
3.1 Manipulating the program . 15
3.2 Adapting a supercompiler to Erlang 16
3.3 Tools for working with expressions 17
3.4 How to build an Erlang supercompiler 18

3.4.1 Driving the program . 19
3.4.2 Reduction contexts . 19
3.4.3 Focusing creates contexts 20
3.4.4 Driving function calls . 21
3.4.5 Improved driving of function calls 22
3.4.6 Ensuring termination . 22
3.4.7 Improved driving on early termination 24
3.4.8 Deforestation . 26
3.4.9 Pattern matching . 27

3.5 Tidying up . 28
3.6 Summary . 28

4 Results 30

5 Discussion 33
5.1 Related work . 33
5.2 Future work . 33

A Residual programs 36

vi

Chapter 1

Introduction

Not long ago the sentiment among programmers was that for most program-
ming tasks a low-level language is appropriate. High-level languages were not
considered serious, and the programs written in them were somehow less real
than those written in a low-level language. Today we find high-level languages
accepted in the mainstream.

The architecture of the computer has not changed much since the days when
they were used primarily for computing, which is an activity that does not re-
quire much more abstraction than limited-precision numbers, arrays and per-
haps functions. Low-level languages are designed to program the machine as it
is. When a programmer requires more abstractions he must either express them
at the level of the machine or choose a programming language that automates
that process.

What exactly makes a programming language low-level or high-level may
then be nothing but an historical accident, having more to do with the abstrac-
tions provided by the machine than with any attribute of the language itself.
It is nevertheless true that programs written in high-level languages must be
translated to the lower level of the machine, either by way of interpretation or
compilation.

Interpretation necessarily introduces some overhead: the machine is now
running both the interpreter and the program. The machine itself is a kind
of interpreter, so there are now two interpreters reading the program. The
overhead of the first interpreter can be removed by compilation, which translates
the program into one that can be interpreted directly by the machine. Any
high-level abstractions are translated into those provided by the machine and
the result is called machine code.

At this point the program can be made to run with less overhead if the
machine code is improved. The discipline of computer science that studies such
low-level optimisations is quite mature. These transformations do not, however,
deal with high-level abstractions. In translating high-level code into machine
code the abstractions, the concepts, are lost. This is similar to dissolving a
Nobel medal in aqua regia. All the gold will still be in the liquid, it will just no
longer be a Nobel medal.

To optimise a high-level program it is necessary to work with the same
concepts that the program uses. Since the compilation process discards the
conceptual information it follows that such optimisations must be made before

1

translation to machine code. Therefore they should be done on a representation
of the program that is similar to the source code. The idea in basic terms is to
change the program in ways that preserve its meaning but that makes it more
suitable for the low level of the machine.

The programmer can do these optimisations himself, but it is tedious work.
Programmers who have so often introduced automatisation into other fields
should not be afraid of it in their own. With automatic optimisers the program-
mer who uses high-level languages need not sacrifice performance for comfort.

1.1 Source-level optimisation

In introductory courses to computer science the student is told that computer
science has nothing to do with computers, that computer science is not a science,
that computer science is about how. If computer science has nothing to do with
computers, then who is it that is interested in how to make programs run faster?
The efficiency of faster program is only relevant if run on an actual computer,
and computer science allegedly does not deal with those.

While it is difficult to study program optimisations without reference to the
fact that computers compute, it would be even more difficult to study them
without reference to actual computer programs. Let us therefore look at an
example of what is concretely meant by source-level optimisation.

four() ->

X = 2,

X + (1 + 1).

Let us start out with a simple example of an Erlang function (all examples
in this thesis are written in Erlang). The first thing one notices is that the
code obviously is silly and no person would ever write like that. But computer
programs can also write code and they are usually not very careful to write code
that looks good. Anyone who is familiar with programming languages can look
at the example and see that it can be rewritten like this:

four() ->

4.

There are actually three separate types of optimisation involved in this
rewriting. One notices that the X in the last expression can be replaced by
the constant 2. This is called constant propagation:

four() ->

X = 2,

2 + (1 + 1).

Next one notices that 1 + 1 also can be replaced by a constant, and after
that 2 + 2 can be replaced by a constant. This is called constant folding and is
generally applicable when a primitive operation, such as addition, has constant
arguments:

four() ->

X = 2,

4.

2

Lastly it is clear that X is no longer used and can be removed. When this
is done the effect is called dead code elimination or useless-variable elimina-
tion [34]. After performing these optimisations the code certainly looks im-
proved. But there is a very important distinction that must be made clear. The
optimisations shown so far merely name what was done to the code.

Computers compute and computation is done by some specific means. If
a computer program is to be devised that can do this rewriting automatically
then one must first discover a method by which it can be done. Three kinds of
optimisations have been demonstrated, but not yet a single method which can
accomplish them.

The simplest of these optimisations is surely constant folding. One way
of doing constant folding is as follows. First use a parser that translates the
program into a data structure. Then walk over that data structure looking for
opportunities for constant folding. When finding such an opportunity do the
computation and replace that part of the code with the result.

The example contains two opportunities for constant folding, but an opti-
miser that only uses this method will only pick up the fact that 1 + 1 = 2. If
the optimiser is to recognise the second opportunity it must also be capable of
constant propagation. Clearly such an optimiser is more powerful. The more
powerful optimiser may be expected to produce better code.

1.1.1 Partial evaluation

Partial evaluation [17] is the computation performed by a particular type of
program called a partial evaluator. For contrast one might say that a normal
interpreter or compiler does full evaluation, i.e. it runs the whole program.
Those parts of a program that can change from time to time (perhaps they
depend on input from the user) are considered dynamic. Those that do not
change are static and can in principle be run ahead of time. The technology of
partial evaluation is well established and has been incorporated in commercial
compilers [47].

The output of a partial evaluator is a new program, which is called a residual
program, where only the dynamic computations remain. A partial evaluator can
be used for optimisations, but there are also other interesting uses [4, 3, 29].
The partial evaluator described in [47] can accomplish constant propagation,
constant folding, useless code elimination, copy propagation and procedure inlin-
ing. Copy propagation is similar to constant propagation, except that a variable
has been bound to another variable instead of a constant. Procedure inlining
replaces a procedure call with the body of the procedure.

Let us look at a more interesting example program and see what partial
evaluation can do. Listing 1.1 on page 6 shows a program that translates a Uni-
code code point to its UTF-8 encoding. The optimisation opportunities in this
program will only show themselves if procedure inlining is performed. Both Len

and I are static in this program, so the expressions Len >= I, 6 * (Len - I)

and element(Len + I, LengthCodes) are also static. That means that they
can all be evaluated by the partial evaluator.

Listing 1.2 shows what this program might look like after partial evalua-
tion. There are two obvious inefficiencies in this residual program. It still calls
the lists:flatten function and unfortunately there is not really that much

3

a partial evaluator will do about that.1 It could be taught to recognise this
special case, but in general to remove such function calls requires more powerful
transformations.

The other inefficiency is that a few uses of the bitwise operations (bsr, bor
and band) are strictly not necessary and have no effect. It is certainly possible
to teach the partial evaluator about these cases as well, but there is a surprising
way of fixing it by modifying the original program. Normally one thinks that
adding conditionals to a program will make it slower. This is not the case if the
conditionals are static and a partial evaluator is used.

The idea is demonstrated in listing 1.3. This style may not be a great im-
provement on the original program2, but the partial evaluator can avoid resid-
ualising the redundant bitwise operations in this version. The conditionals will
be gone in the residual program because the guard expressions can be evaluated
statically. Knowing what optimisations your compiler is capable of may change
the way you write programs.

1.1.2 Deforestation

What can be done to remove the call to lists:flatten in listing 1.2? It would
certainly be possible to modify the program so that the call is avoided, but it
would be better if the optimiser could do this automatically. More powerful
transformations are needed. Ideally one would like the code to end up like in
listing 1.4.

The problem with the original code is really that it uses intermediate lists.
One part of the program produces a list and another part immediately consumes
it. This type of composition is quite common in functional programs. One type
of transformation that can address this problem is called deforestation [48, 9].

The deforestation algorithm will fuse the producer and consumer in this ex-
ample (assuming of course that it has access to the definition of lists:flatten).
Somewhere inside the definition of lists:flatten is a pattern matching on the
arguments. Because it is known in the example what the arguments will look
like the pattern matching can be done ahead of time. It is not necessary to
know exactly what the contents of the lists given to lists:flatten will be; the
algorithm only needs to know the structure of the arguments.

The original deforestation algorithm did not turn out to be as practical as
had been hoped, so in response a “short cut” was developed [6]. The new
approach is often known as shortcut fusion and can perform deforestation on a
subset of the cases the original algorithm could handle. The short cut consists
of recognising special cases. In the original paper [6] the special function pairing
foldr and build is recognised and [43] describes shortcut fusion for the functions
unfoldr and destroy.

The short cut to deforestation algorithm would not be able to remove the
intermediate lists in the UTF-8 encoder example. It would first be necessary to
rewrite lists:flatten and the encoder in terms of a recognised function pair-
ing. Short cut fusion does not have the generality of the original deforestation

1The list structure is static in this particular example and given as a direct argument to
lists:flatten. A partial evaluator could conceivably, depending on how lists:flatten is
written, eliminate the intermediate list. In practise this does not seem to be done.

2The style could be improved by hiding the conditionals in separate functions. If this is
done then the partial evaluator will inline them and the same optimisations will be performed.

4

algorithm. Furthermore both algorithms are considering only part of the prob-
lem of how to go from listing 1.1 to listing 1.4. They do not supplant partial
evaluation. There is a more general transformer that can replace both partial
evaluation and deforestation.

1.1.3 Supercompilation

Supercompilation [45] is a transformation more powerful than deforestation and
partial evaluation. They are similar enough that one can place them in a
framework of transformations where different amounts of information is propa-
gated [40].

Recall that the partial evaluator can evaluate those parts of a program that
are static, while leaving intact those that are dynamic. The supercompiler will
not stop when it encounters dynamic data. It will continue working on the
program until some termination criteria is triggered.

Suppose that a program constructs a list. If the elements are static then
a partial evaluator can in principle do constant folding and construct the list
ahead of time. But if the elements of the list are dynamic this will not be
possible. Whereas a supercompiler will not be able to do constant folding either
in this case, it will do something better than give up. It will construct a model of
the list and will use that model as if it were the actual list. If the program then
does pattern matching on the list the supercompiler can look at the model and
do the pattern matching ahead of time. As a result of this it would eliminate
the call to lists:flatten in the UTF-8 encoder.

Supercompilation is more general than has been indicated here. Jonsson has
recently worked on supercompilation for call-by-value semantics [19]. This is
what is needed to make a supercompiler for Erlang that can take the program
in listing 1.1 and find the program in 1.4 and this is what the rest of this thesis
is about.

1.2 Delimitations

The goal of this work has been to develop an Erlang implementation of Jons-
son’s supercompiler. The thesis does not include a full treatment of the Erlang
language: side-effects are explicitly outside the scope of the thesis, the pattern
matching language is only handled partially. The implementation should work
on examples from the literature.

The implementation is a first step towards a practical supercompiler that
works with existing Erlang programs. It also replicates the work of Jonsson,
showing that the algorithm works as expected, and for a language not previously
tested. The report both explains the implementation and serves to introduce
supercompilation to a wider audience.

Supercompilers have uses other than optimisation. They have e.g. been
used to prove the equivalence of higher-order terms [26], perform inverse com-
putation [8] and do theorem proving [44]. With the Futamura projections a
supercompiler can be coupled with an interpreter and work as a compiler, or
turn an interpreter into a compiler, etc [4, 41]. The intended use for this work
is supercompilation applied to source-level program optimisation.

5

to_utf8(Code, Len, I, Set, Mask) when Len >= I ->

[((Code bsr (6 * (Len - I))) bor Set) band Mask];

to_utf8(_, _, _, _, _) -> [].

to_utf8(Code, Len) ->

LengthCodes = {16#00, 16#00, 16#C0, 16#E0, 16#F0},

lists:flatten(

[to_utf8(Code, Len, 1, element(Len+1, LengthCodes), 16#FF),

to_utf8(Code, Len, 2, 16#80, 16#BF),

to_utf8(Code, Len, 3, 16#80, 16#BF),

to_utf8(Code, Len, 4, 16#80, 16#BF)]).

to_utf8(Code) when Code < 16#80 -> to_utf8(Code, 1);

to_utf8(Code) when Code < 16#800 -> to_utf8(Code, 2);

to_utf8(Code) when Code < 16#10000 -> to_utf8(Code, 3);

to_utf8(Code) -> to_utf8(Code, 4).

Listing 1.1: A UTF-8 encoder that benefits from partial evaluation.

to_utf8(Code) when Code < 16#80 ->

lists:flatten([[((Code bsr 0) bor 0) band 16#FF],[],[],[]]);

to_utf8(Code) when Code < 16#800 ->

lists:flatten([[((Code bsr 6) bor 16#C0) band 16#FF],

[((Code bsr 0) bor 16#80) band 16#BF],

[], []]);

to_utf8(Code) when Code < 16#10000 ->

lists:flatten([[((Code bsr 12) bor 16#E0) band 16#FF],

[((Code bsr 6) bor 16#80) band 16#BF],

[((Code bsr 0) bor 16#80) band 16#BF],

[]]);

to_utf8(Code) ->

lists:flatten([[((Code bsr 18) bor 16#F0) band 16#FF],

[((Code bsr 12) bor 16#80) band 16#BF],

[((Code bsr 6) bor 16#80) band 16#BF],

[((Code bsr 0) bor 16#80) band 16#BF]]).

Listing 1.2: The UTF-8 encoder after partial evaluation.

6

to_utf8(Code, Len, I, Set, Mask) when Len >= I ->

A = if Len == I -> Code; true -> Code bsr (6 * (Len - I)) end,

B = if Set == 0 -> A; true -> A bor Set end,

[if Mask == 16#FF -> B; true -> B band Mask end];

to_utf8(_, _, _, _, _) ->

[].

to_utf8(Code, Len) ->

LengthCodes = {16#00, 16#00, 16#C0, 16#E0, 16#F0},

lists:flatten(

[to_utf8(Code, Len, 1, element(Len+1, LengthCodes), 16#FF),

to_utf8(Code, Len, 2, 16#80, 16#BF),

to_utf8(Code, Len, 3, 16#80, 16#BF),

to_utf8(Code, Len, 4, 16#80, 16#BF)]).

to_utf8(Code) when Code < 16#80 -> to_utf8(Code, 1);

to_utf8(Code) when Code < 16#800 -> to_utf8(Code, 2);

to_utf8(Code) when Code < 16#10000 -> to_utf8(Code, 3);

to_utf8(Code) -> to_utf8(Code, 4).

Listing 1.3: The UTF-8 encoder with static conditionals.

to_utf8(Code) when Code < 16#80 ->

[Code];

to_utf8(Code) when Code < 16#800 ->

[((Code bsr 6) bor 16#C0),

(Code bor 16#80) band 16#BF];

to_utf8(Code) when Code < 16#10000 ->

[((Code bsr 12) bor 16#E0),

((Code bsr 6) bor 16#80) band 16#BF,

(Code bor 16#80) band 16#BF];

to_utf8(Code) ->

[((Code bsr 18) bor 16#F0),

((Code bsr 12) bor 16#80) band 16#BF,

((Code bsr 6) bor 16#80) band 16#BF,

(Code bor 16#80) band 16#BF].

Listing 1.4: The “ideal” version of the UTF-8 encoder.

7

Chapter 2

Supercompilation

The word supercompiler is combined from supervise and compile. A super-
compiler evaluates (compiles) a program symbolically, much like a partial eval-
uator does, but it is more powerful. The residual program can have a structure
that is different from the original program, with new recursive functions that
were not in the original, where redundant computations and memory allocations
have been removed, and where even redundant passes over data may have been
removed [45].

The supervision in a supercompiler means that it models what the program
is doing, and then generalises from the models. In the words of the creator of
supercompilation, Valentin F. Turchin:

The concept of a supercompiler is a product of cybernetic think-
ing. A program is seen as a machine. To make sense of it, one must
observe its operation. [. . .] The supercompiler concept comes close
to the way humans think and make science. We do not think in terms
of rules of formal logic. We create mental and linguistic models of
the reality we observe. How do we do that? We observe phenomena,
generalize observations, and try to construct a self-sufficient model
in terms of these generalizations.[45]

The way of thinking that Turchin wrote about is called induction1 and it
has been behind the amazing progress in the natural sciences [13]. Turchin
then goes on to list a number of things a supercompiler can be used for, includ-
ing: metacomputation, creation of new algorithms, problem solving and proving
properties of software. In comparison program optimisation may seem like a
parlour trick.

The full implications of supercompilation are yet to be realised. The senti-
ment in [8] was that “[d]espite these remarkable contributions, supercompilation
has not found recognition outside a small circle of experts.” This seems to hold
true to this day.

1This is induction in the epistemological sense, not mathematical induction.

8

2.1 Overview of supercompilation

The basic questions that determine the design of a supercompiler are: how
to drive the program, when to stop and what to do then. In order to explain
where the different parts of supercompilation fit in the whole, let us do a thought
experiment.

Imagine that you are to simplify a functional program by hand. You start by
writing down the initial expression on a paper. Then you apply the appropriate
rules of evaluation, one by one. In the end you will have computed the output
of the program. But what if you do not know what values to give some of the
variables (i.e. some of the inputs are missing)? The solution to the exercise must
be a new program.

You might proceed by applying the rules of evaluation, also using every trick
you know to make the program better. Eventually you get stuck on a variable.
How do you proceed? Write down the expression you are stuck on and proceed
with one of the subexpressions instead, making a note of what expression it
came from. When you are done with a subexpression you proceed to the next
one. What you are doing is a type of driving, and the derivation is called a
process tree [7].

How will you stop? Compare the expression you are currently working on
with all those you have already worked on. If you notice that you have worked
on the same expression before (although perhaps with different variables), then
it is a good time to stop. What you have found is a renaming. Since you have
already seen it before, you have already simplified it once, and therefore you have
the code that implements it. To reuse that code you can make a new function
and replace the occurrences of the expression with calls to that function. This
is called folding. The arguments to the function will be the variables used in
the respective expressions.

Finding a renaming is the easy case, however. Some programs will have
you write down an endless series of ever growing expressions, none of which
is a renaming of an earlier expression. Since you are doing this by hand you
will probably recognise the pattern and stop. The pattern may be obvious to a
person, but a computer program needs a specific method that tells it when to
stop. The method most commonly used is the whistle, which will be explained
in detail later.

The pattern is that new expressions keep appearing that look like old ex-
pressions, except that the new expression has some extra code in it, which most
likely comes from a loop in the program. Perhaps the program has a loop that
adds an element to a list for every iteration. Then you will see that the ex-
pressions you are writing down are the same, except when comparing an old
expression to a later one the later one has added more elements to the list. This
means that the old expression is embedded in the new expression.

When you found a renaming you created a new function. With these growing
expressions things are not as simple, but the goal is more or less the same. This
time the expressions are different, so you need to create a function that can
implement both of them. What you need is a more general function, where the
differences between the expressions can be passed as arguments to the function.
This is called generalisation and will also be explained in detail later.

Armed with a generalisation of the old and new expressions, you can create
a new function. The generalisation will not only give you an expression that

9

can implement either of the two expressions, it will also tell you the differences
between them. These differences can be used as arguments to the new function.

For a more formal description of this type of supercompilation, see [38]
and [8]. There are major variations between supercompilers, but the steps
described above are common elements.

A distinction is made between positive and perfect supercompilation. In a
positive supercompiler information about what is true in a program is prop-
agated [35, 39]. A perfect supercompiler also maintains negative information,
i.e. it keeps track of what is false [33, 7]. This lets it remove more unneces-
sary tests from the residual program. The implementation of a positive super-
compiler is somewhat simpler because the propagation of truths can be done
through substitutions (using e.g. information from let and case expressions),
whereas negative information is managed by constraints.

The rest of this chapter will go into more detail on how the supercompiler
knows when to stop, how generalisations work and what kind of supercompila-
tion is appropriate for Erlang.

2.2 The whistle

The whistle is a nickname given to what is formally known as the homeomorphic
embedding relation, written as e1 E e2. The supercompiler uses it to see if an
old expression e1 is embedded in the new expression e2. It is inductively defined
as follows:

Variable Constant Coupling Diving

x E y n1 E n2
s1 E t1, . . . , sn E tn

h(s1, . . . , sn) E h(t1, . . . , tn)

s E ti for some i

s E h(t1, . . . , tn)

Table 2.1: Homeomorphic embedding.

An outline for an implementation of the whistle can be found in listing 3.7
on page 24. This definition is more or less the one seen in the literature (e.g. [19,
37, 28, 36]). To the untrained eye this definition seems rather complicated, but
it is actually much simpler than it appears.

First of all, the definition only contains variables, constants and function
calls, but it is meant to be valid for all types of expressions. The parts that
make up a function call can be thought of as a name and some subexpressions.
Whenever two function names are compared here, that means the operation the
expressions perform should be compared (e.g. if one arithmetic expression uses
addition, then so should the other one). Where function arguments are used in
the definition, just use whatever subexpressions the two expressions have.

The first part, x E y, merely means that if the two expressions are vari-
ables, then that is a homeomorphic embedding. The next one says the same
for constants. The rule for coupling means that two function calls are embed-
ded in each other, but only as long as they are calling the same function (here
named h) and all their arguments are pairwise embedded in each other.

If this was all there was, then the expressions would need to be completely
the same, except maybe with different variables and constants. But the diving
rule means that parts of the second expression can be ignored. Here s is an

10

old expression and h is again a function name. In English the rule says: if s is
embedded in one of the function arguments, then s is embedded in the function
call. This means that only one of the arguments is relevant. Also note that h
is not used anywhere else, so it does not matter what it is.

f(X) E f(X)

f(X) 5 g(X)

f(X) E f(Y)

f(X) E [f(X)]

f(X+1) E g(f(X+1),Y)

f(X+1) E f(g(X+1,Y))

X+1 E (X+1)+1

X+1 5 X-1

[X|Xs] E [A,X|Xs]

g(X*2,Y-1) 5 g(X,Y-1)

Table 2.2: Examples and non-examples of homeomorphic embedding.

When all of these rules are put together the result is a test that determines
if an expression is embedded in another expression. The relevance to supercom-
pilation comes from the diving part, that can basically ignore extra list items,
extra function calls, extra additions from loop counters, and so on, in the second
expression. So the whistle tests if two expressions are the same, but allows the
second one to contain the kind of extra expressions that one typically sees in
functional loop constructs.

These expressions will start to appear if the supercompiler is driving a loop
that is in turn making the driving itself loop. Unfortunately the whistle is con-
servative [2] and sometimes the whistle will stop the driving algorithm even
though it would have stopped on its own. When the whistle blows the super-
compiler generalises the expression it is working on against the old expression,
and as a result it loses some of the context of the expression. The result is
that the residual program will be worse than it would otherwise have been, and
getting a good residual program depends on deriving good generalisations.

2.3 Generalisation

What type of code triggers the whistle? Listing 3.6 on page 23 shows an imple-
mentation of list reversal that needs the whistle for driving to stop. One might
say that the code is starting to repeat itself. The driving is stopped by:

rev(Xs0, [X0|Ys]) E rev(Xs1, [X1,X0|Ys])

The old expression to the left is embedded in the newer expression. This is
not a renaming since the newer expression has an extra element X1 in the list.
The old expression does not have that element. If the driving is not stopped
then new elements will keep being added. One way the supercompiler stops is

11

by finding a renaming of an older expression, so how how can that be achieved
in this case?

Suppose that the supercompiler already has created a function that imple-
ments the older expression. It does not matter what the implementation is, we
only need to know that it exists. If the driving is to stop because of a renaming
then the new expression should (at some point) be able to use that function.

This is a problem that should be familiar to most programmers. Think of
the old expression as a library function, and for some reason or other, you have
to write a new function that is expressed in terms of the library function. In
the case of a supercompiler the library functions can rather strange. In this
example you are given this library:

rev([],Ys) -> Ys;

rev([X|Xs],Ys) -> rev(Xs, [X|Ys]).

h(Xs0, X0, Ys) -> rev(Xs0, [X0|Ys]).

The actual implementation of h may be different, but the semantics must still
be those of the old expression. How would you rewrite rev(Xs1, [X1,X0|Ys])

in terms of h? This is the problem of generalisation, a difficult and very impor-
tant problem in supercompilation [46].

The method of generalisation most commonly used today by positive su-
percompilers is based on the most specific generalisation (msg), which basically
takes two expressions and finds differences between them [37]. This results in
a more general expression and two substitutions. The more general expression
contains new variables and the substitutions contain an entry for each variable.
The expression given by the msg of the old and new expressions in our running
example is:

rev(V0, [V1|V2])

Together with the substitutions:

V0 = Xs0, V1 = X0, V2 = Ys

V0 = Xs1, V1 = X1, V2 = [X|Ys]

By using the substitutions the more general expression can be turned back
into one of the original expressions, but that is not the purpose of the substitu-
tions in the case of supercompilation. Notice that the more general expression
is a renaming of the old expression, the one implemented by h. If the super-
compiler drives the more general expression it will now terminate.

In some programs the two expressions that triggered the whistle can not be
generalised very well by the msg, e.g. because one of the expressions is a function
call while the other one is a list. In this case the fallback strategy is to split the
expression, which means to turn all its subexpressions into new variables.

The quality of the generalisations determine the quality of the residual pro-
gram. When an expression is generalised some of the context of the expression
is lost, and it is that context the supercompiler uses to perform its transfor-
mations. There are better generalisations available [30], but the msg is a very
common one and illustrates a solution the problem rather well.

12

2.4 Supercompiling Erlang

There are a number of supercompilers described in the literature, but is there
one that can be used to supercompile Erlang? Much of the recent research on su-
percompilation has been for lazy (call-by-need or call-by-name) languages [31, 2,
27]. Erlang has call-by-value semantics, so it is not obvious that these supercom-
pilers can be used. One of the important differences between these evaluation
orders is that they act differently with regards to termination. A program that
goes into an infinite loop under call-by-value semantics might terminate under
call-by-need semantics. Thus if the wrong supercompiler is used for Erlang
the residual program may have a different meaning than that of the original
program.

One supercompiler that handles call-by-value is the Java supercompiler [24,
25]. There are a few concerns that make it inappropriate for Erlang. One of
its important characteristics is that it handles mutable objects, which Erlang
does not have. Unlike most supercompilers it does not generate new recursive
functions (or methods), and generally appears to be a poor fit for a functional
higher-order language. The algorithm is also not presented fully, so it may be
difficult to replicate, especially when targeting such a different language.

Another possibility is to take one of the supercompilers from the literature
and adapt it to call-by-value semantics. In [2] the authors say that doing this
with their supercompiler “should be straightforward”. There is some uncer-
tainty as to whether this would work. But in making their remark the authors
point us in the direction of a supercompiler for a call-by-value language.

Jonsson and Nordlander have published a positive supercompiler that is
meant for higher-order call-by-value language [21, 19]. The basic ideas used in
their supercompiler are as those previously described in this chapter, but with
some differences. The driving part of the algorithm and the building of the
residual program is intermingled in such a way that no process tree is actually
built. This is a little bit as if the supercompiler itself had been supercompiled
beforehand: the driving produces a process tree and the building of the residual
program consumes it, but now the intermediate data structure (the process tree)
has been eliminated.

One possible problem is that the language their supercompiler was designed
for is pure, i.e. free from side-effects. Erlang has a few side-effects, such as mes-
sage passing, and it is difficult to say what this supercompiler algorithm will do
with them (they might be e.g. removed or reordered). But if one keeps to a pure
subset of Erlang, this problem can be eschewed. Now a supercompiler algorithm
has been chosen and the next chapter will go into detail on its implementation.

2.5 Summary

Supercompilation is a powerful but relatively unknown program transformation
technique capable of creating new recursive functions and removing many types
of redundancies in programs. Its operation has been compared to inductive
thinking.

When a supercompiler drives a program it creates what is more or less an
potentially infinite tree of subexpressions, a process tree. When the tree has
two expressions that are renamings of each other a new function is created and

13

the expressions are replaced by function calls. This is often enough to make the
tree finite, i.e. make the driving terminate properly.

For some programs renamings are not enough. The whistle tells you when
an expression in the process tree is remarkably similar to one that came before
it. When this happens it is most likely a good idea to stop, because those
expressions are probably part of a loop, which the supercompiler otherwise
might go on driving forever. The whistle is however conservative, and will
sometimes stop driving too soon, and the residual program will not be as good
as it should be.

When the whistle blows the current expression should be generalised, so
that those parts that do not cause it to loop can be improved. The basic
problem is to determine why a series of expressions is growing and factor out
that problem from the current expression. A common method, the most specific
generalisation, tries to extract all differences between the expressions. If that
fails the fallback is to split, i.e. extract all subexpressions instead. A problem is
that not all differences are the cause of the looping and splitting is even more
approximative.

14

Chapter 3

Implementation

The positive supercompiler algorithm from [19] was chosen for this work. This
chapter describes the implementation of the supercompiler. A general view of
where the supercompiler fits into the existing Erlang system is given. Then
the question of how the supercompiler algorithm can be adopted to Erlang is
addressed. A few of the basic tools that are needed by the implementation
are shown, followed by an incremental development of the main part of the
supercompiler. It starts out with a simple structure and then more and more
features are added.

3.1 Manipulating the program

Supercompilation is a form of partial evaluation and the algorithm chosen for
this thesis is structured very much like a program evaluator. It will take as input
an Erlang program and produce a new Erlang program, a residual program, as
its output. As such it will need a way of parsing source code files and turning
parsed code back into text.

There are many ways to do this. If one was starting from scratch then it
would be necessary to write an Erlang parser. This parser would not need to
be written in Erlang. Indeed, the whole supercompiler could be implemented
in any language, but there are certain benefits to implementing a language in
itself. The semantics of the language that is being evaluated are more readily
available.

In the case of Erlang there are further benefits to writing the supercompiler
in Erlang. There are library modules for parsing and working with parsed
Erlang code. A particularly interesting feature of Erlang is that modules can
specify another module to be used as a parse transform. When the compiler
is compiling a module it first parses the source code and then lets the parse
transform change the code in any way it likes.

The parse transform receives a list of forms. Each form represents a top-
level construct of an Erlang module, e.g. an export attribute or a function
declaration. The forms are tuples where the first element names what type
of form it represents. The second element contains the line number for the
form. The rest of the elements depend on what type the form has, e.g. function
declarations have a name, an arity and a list of clauses.

15

When the parse transform is finished it returns a list of forms. This list is
used by the compiler instead of the original forms. It is possible to view the new
program by passing the -P flag to the erlc compiler. The net effect of making
the supercompiler a parse transform is that it can be used as a new compiler
pass.

The supercompiler has been written in a functional programming style,
i.e. without the use of side-effects. Environment records are used to pass around
information. These are used instead of global variables, processes that keep
state, or something similar. The records contain information on what expres-
sions have been seen by the supercompiler, what variables names have been
used, the definitions of top-level functions, etc.

The supercompiler algorithm is itself defined in a functional style, so the
environment records match the algorithm’s information flow quite well. Most
functions in the supercompiler have an environment record both as input and
output. One reason to return a new environment record is if a new variable
was used, and it needs to be different from every other variable in the program.
Another reason has to do with Erlang’s variable scoping rules, which allow
variables declared inside expressions to be bound outside of them.

3.2 Adapting a supercompiler to Erlang

The supercompiler algorithm chosen for this thesis is the algorithm from Peter
A. Jonsson’s doctoral thesis [19]. Erlang is not exactly the same as the language
used in the published algorithm. Looking beyond mere surface syntax, Erlang is
a bigger language and offers different semantics for many constructs. In order to
implement the supercompiler algorithm for Erlang it is necessary to understand
the algorithm and adapt it to Erlang.

The language in the published algorithm has very simple scoping rules. A
variable introduced in an expression has a scope that does not reach outside of
the expression. This is true for some Erlang expressions, but not for others. The
most visible case when this is true is for match expressions, which look like they
might behave like variable assignment from C-like languages. A less obvious
example is when a variable is defined by every clause of a case expression.
After the case expression has been evaluated new variables may have become
bound. The supercompiler needs to know the current set of bound variables, and
therefore the implementation has to pass this information upwards, by returning
a new environment record.

Variables can not be rebound in Erlang. If a bound variable occurs in a
pattern of e.g. a match expression or a case clause then that part of the pattern
must match the old value of the variable. If the value does not match then
the pattern does not match, and if there are no other patterns to try then the
result is a runtime error. The supercompiler should preserve these errors in
the residual program, which it can do rather simply by keeping track of the
bound variables, and preserving the original code when necessary. It should be
noted that while variables can not be rebound, they can be shadowed. Variables
used in the patterns of anonymous functions and list comprehensions are fresh
variables and have nothing to do with other variables of the same names.

Much of the power of the supercompiler comes from rules that work with
pattern matching. The pattern matching in Erlang is very powerful and can

16

be difficult to handle. The patterns themselves can have complications such
as repeated variables, matches or unusual data types. Alongside a pattern
there may be a guard sequence. These are expressions in a limited side-effect
free language. If the supercompiler is to produce improved code it must be
able to statically determine if patterns and guard sequences will match a given
expression.

Somewhat simpler to handle are some of the extra functional constructs that
Erlang brings. The built-in append operator can be translated into a function
call. List comprehensions are missing from the language used in the published
algorithm, but they are easily translated into simpler terms. The technique
used for this is the simplest one presented in [18]. There are better methods
described, but they are basically manual optimisations of the simpler methods.
The supercompiler should be able to automatically derive the better solutions.

The supercompiler algorithm uses letrec expressions. These expressions are
used to define local recursive functions. There is no proper letrec in Erlang, as
named functions can only exist at the top level of a module. The implementation
strategy here has been to construct artificial letrecs that are later merely moved
to the top level. Due to how the supercompiler algorithm works these local
recursive functions never have any free variables. Therefore this strategy does
not require lambda lifting [16].

Erlang has a number of side-effects, such as message passing. The super-
compiler algorithm does not have anything in place to handle side-effects. They
are outside the scope of this thesis. The problem is that the supercompiler may
rearrange computations, so that the original evaluation order of the program is
not preserved. Therefore side-effects may also be rearranged, e.g. the residual
program might try to receive the reply to a message that has not yet been sent.
This may not be as big of a problem as it seems. Armstrong recommends that
Erlang programs be split into functional and non-functional parts [1]. If the
modules of a program are divided in this way it will be easier to supercompile
only the purely functional modules.

Erlang and the language in the published algorithm are of a very similar phi-
losophy. Both are functional languages with call-by-value semantics (optional
in the case of the research language). Both use pattern matching. Even though
Erlang uses it much more extensively, the basic elements are the same. As will
become apparent later, where Erlang’s semantics become too difficult, the su-
percompiler can merely ignore the difficulty and go on with rest of the program.
This means that the implementation can be developed incrementally and tested
at each step of the process. These are the reasons why Jonsson’s supercompiler
algorithm was chosen for this thesis.

3.3 Tools for working with expressions

When attempting to solve a problem it is generally a good idea to first divide
it into smaller problems. In the case of a program transformer some of those
smaller problems are common enough that they are standard. The erl syntax
and erl syntax lib modules provide functions for walking over syntax trees in
various ways, e.g. while building a new syntax tree or gathering data. While
they provide some elementary tools, they are curiously missing others.

Most programming languages use named variables and Erlang is no different.

17

When the supercompiler creates a new variable it must be guaranteed to be
different from every other variable in the program. The function that returns a
new fresh variable is called gensym. The environment record contains the set of
all previously used variable names and gensym merely picks a name that is not
in the set. The variable names it creates are made up of two parts: a prefix and
a unique id. The prefix is normally the name of an existing variable. Keeping
the prefix separate makes it easy to ensure that variable names do not grow
ever longer (fresh variables can be used as a prefix over and over again), and it
makes it easier to reconstruct the original variable names.

Another common operation related to variables is free variable analysis. This
analysis is used to determine which variables used inside an expression are bound
outside of it. The implementation is based on the analysis in erl syntax lib. The
only quirk is that it returns the variables in a stable order. One may think of the
order as being defined by the order in which a non-random tree search algorithm
will encounter each free variable, meaning that if the free variables of f(X,Y) are
[X,Y], then free variables of f(Y,X) are [Y,X], and not the other way around.

When the supercompiler creates new functions it turns the free variables in
the original expression into function arguments. If those variables were returned
in a different order next time then the new function would be called with its
arguments in the wrong order. Other implementations are certainly conceivable
that would not require a stable order.

Alpha conversion rewrites code so that it uses fresh variable names. This
operation is very common in program transformers and makes a lot of other
analysis simpler. The benefits from alpha conversion come from the fact that if
two variables are originally named the same, but are actually different according
the scoping rules, they will be assigned different names. This is commonly used
when “cutting and pasting” code, e.g. when inlining a function.

The implementation dispatches on the expression type. When an expression
introduces a new variable the alpha converter generates a fresh variable and
builds a substitution environment. Whenever it sees a variable reference it
checks the substitution environment to see if there is a fresh variable that should
be used in its place. The substitution environment is returned along with a
new expression, which is the same as the original, except the names have been
changed.

Alpha conversion for Erlang is a bit complicated due to the scoping rules.
But for some of the later analysis alpha conversion means that the scoping rules
have already been implemented and can be ignored. The information flow in
the alpha conversion pass must match the scoping rules, and for Erlang some
information is passed upwards, e.g. when a variable is defined by every clause in a
case expression. The great number of expression types is another complication,
especially since many of them can introduce new variable names.

3.4 How to build an Erlang supercompiler

The tools described in the previous section are going to be familiar to those who
have worked on compilers before. There are some tools that one would normally
not encounter outside of a supercompiler, and it is best to explain them in their
proper context. Let us therefore write a supercompiler from basic principles,
and explain the rest of the tools as they become needed.

18

drive(Env, Expr, R) ->

build(Env, Expr, R).

build(Env, Expr, []) ->

{Env,Expr}.

Listing 3.1: A supercompiler that stops immediately. These rules are default
fallthrough rules that will be in the final supercompiler.

3.4.1 Driving the program

The main part of the supercompiler is the driving algorithm (see section 2.1).
One might think of the supercompiler as a program interpreter that is allowed
to stop at any point and return a new program (whereas a proper interpreter
would attempt to return a value). If the supercompiler has access to all of the
program’s inputs it might actually run the program until it returns a value, but
in principle it can stop anywhere along the way. Listing 3.1 shows that principle
in action. The main entry point is the drive function and it implements the two
fallthrough rules from Jonsson’s supercompiler.

The relationship between the drive and build functions is similar to that of
eval and apply in a tree interpreter. The eval function walks over the syntax
tree of the code, just like drive walks the tree. When eval encounters a function
call it uses apply to compute the value of that call. In a somewhat similar
manner, the drive function calls build to compute a residual program. In order
to do that, build may need to call drive, just as apply often needs to call eval.

3.4.2 Reduction contexts

The drive function takes an environment record Env, a parsed code expression
Expr and a reduction context R. The job of the reduction context is to keep
track of what code will consume the return value of the current expression. This
is similar to, but not the same as, a return stack or a continuation.

A reduction context is an expression with a hole that indicates where the
return value (or residual code) of the expression currently being driven should
be placed. This is represented using the same technique as [19]. The contexts
are implemented as lists of records, with one record type for each of the possible
expression types a context can contain.

An alternative implementation would have been to merely use the symbolic
form of the consuming expression, but it is easier to pattern match on a flattened
list. The empty context is represented by the empty list, and its meaning is that
the consumer of the return value is unknown or uninteresting. This has already
been implemented in listing 3.1. The result is merely that when build is given
an expression and an empty context it returns the expression as is.

The implementation uses five types of reduction contexts: binary operators,
unary operators, function calls, case expressions and match expressions. They
all include as much information as is necessary to rebuild the expression they
represent (including source line information), except for the subexpression that
goes in the hole.

Listing 3.2 shows two reduction contexts, each containing only one expres-
sion. The first context represents a call to some function taking two arguments.

19

<hole>(Xs, Ys).

case <hole> of

[] -> [];

[X|Xs] -> [X|ap(Xs,Ys)]

end.

Listing 3.2: Examples of reduction contexts. These are used for the third argu-
ment of drive and build. In the implementation they are represented by lists of
records that contain parsed Erlang code.

drive(Env, {op,L,Op,E1,E2}, R) ->

drive(Env, E1, [#op_ctxt{line=L, op=Op, e1=hole, e2=E2}|R]);

drive(Env, Expr, R) ->

build(Env, Expr, R).

build(Env0, Expr, [#op_ctxt{line=L, op=Op, e1=hole, e2=E2}|R]) ->

{Env,E} = drive(Env0, E2, []),

build(Env, {op,L,Op,Expr,E}, R);

build(Env, Expr, []) ->

{Env,Expr}.

Listing 3.3: Focusing on and building binary operator expressions.

The hole of this expression will usually be filled with the name of a function.
The second reduction context contains a case expression. Imagine if the

expression that goes in the hole explicitly builds a list. It is a simple enough
job to residualise the code that has already destructured the list into X and Xs.
Because of the way in which the supercompiler passes around the reduction
context this opportunity can arise even if the hole did not contain the list
constructor explicitly in the source code text.

3.4.3 Focusing creates contexts

Reduction contexts are created by the subset of driving rules that focus on
subexpressions. These are rules that, looking at an expression, pick one subex-
pression to continue driving on and place the rest of the expression in the re-
duction context. Listing 3.3 shows a new rule for focusing on the first operand
of a binary operator (e.g. focusing on E1 in E1+E2).

There is also a new build rule for when the context is a binary operator.
There needs to be a build rule for every context type. This new rule is called
by the fallthrough rule of drive, i.e. when nothing more interesting can be done
with E1. The rule drives E2, which was saved in the reduction context, and
finally builds a binary operator expression using the rest of the context R. Note
that it drives E2 in the empty context, meaning that it wants to get back an
expression that can be used for E2 in the residual program.

20

...

drive(Env, {’call’,L,{atom,La,N},Args}, R) ->

drive(Env, {’fun’,La,{function,N,length(Args)}},

[#call_ctxt{line=L, args=Args}|R]);

drive(Env, {’call’,L,F,Args}, R) ->

drive(Env, F, [#call_ctxt{line=L, args=Args}|R]);

...

build(Env0, Expr, [#call_ctxt{line=Line, args=Args0}|R]) ->

{Env,Args} = drive_list(Env0, fun drive/3, Args0),

build(Env, scp_expr:make_call(Line,Expr,Args), R);

...

Listing 3.4: Focusing on and building function calls.

3.4.4 Driving function calls

Any program that has been passed through the latest iteration of the supercom-
piler has come out unchanged. There are a few more rules of this sort that form
the infrastructure of the supercompiler. Things start to get more interesting
when the rules for function calls are in place. The support is provided in three
parts, of which the first are the rules that focus on function calls and rebuild
them. These are shown in listing 3.4. Erlang provides two ways of writing
function calls, so there is an extra rule for that case. The new build rule uses
a utility function that drives a list of expressions in the empty context, and
another utility that residualises function calls1.

The new drive rules focus on the expression in the operator position, which
is usually the name of a global function. There is another drive rule that
triggers when the current expression is the name of a global function. It looks
up the definition of the function in the environment record. If successful it starts
inlining the function, otherwise it calls build which residualises a function call.

The inlining happens in a few steps. The name of the global function is
plugged into the context, meaning the context is turned into an expression with-
out a hole. The free variables of the plugged context are extracted and a fresh
function name is generated. The function definition is then alpha converted and
driven in the current context.

There are now two versions of the same thing: the first has the function
name in the hole, and the second has the function definition in the hole. The
first expression (the plugged expression) is remembered and associated with the
fresh function name. The second one is used for the definition of the fresh
function. With some of the changes described later it will be possible for the
fresh function to call itself, so it is placed inside a letrec. The body of the letrec
is a call to the function and the free variables are used as arguments.

In order to do anything interesting when driving the function definition in
the current context there must be a rule for driving function expressions in
function call contexts. In [19] the equivalent rule expands into a primitive let
form. The Erlang implementation needs to handle the fact that functions can
do pattern matching on arguments. It does this by considering, for each of
the formal arguments, which ones can be placed in let expressions and which

1The make call function will later be extended to handle constructors.

21

ones must go inside a case expression. The let expressions are implemented as
function calls: let Lhs=Rhs in Body becomes (fun (Lhs) ->Body end)(Rhs).

3.4.5 Improved driving of function calls

Let us consider what the supercompiler has at this point. It has found a function
call and has turned the context into an expression. It has then made a new
function that implements that expression, and is equivalent to it, except that
it contains the function definition instead of the function name. Then it placed
that new function in a letrec and residualised a function call. The important
point to remember is that the supercompiler now has an expression and the
name of a function that implements that expression.

The supercompiler can now be improved by making a slight change to the
driving of function calls. After plugging the function name into the context it
will look for renamings of the expression. A renaming is an old expression which
is equal to the expression, except that the variables may be named differently. If
it finds a renaming that means it also knows the name of a function that imple-
ments the expression. Instead of going through the routine of making another
fresh function it can merely residualise a call to the function that implements
the old expression. The arguments to the function are the free variables of the
new expression (the plugged context). The idea is shown in listing 3.5.

With this improvement the new functions that are created might become
self-recursive. This happens if, when driving an expression, a renaming of that
expression is found (see section 2.3 for a description of the benefits of this). An-
other improvement to the supercompiler becomes obvious on testing: sometimes
the new functions are not self-recursive and the letrec is not needed. The fix is
simple. Put a note in the environment record whenever a renaming is found,
remembering the name of the function. Before building the letrec check if the
current fresh function name was used in any renamings.

The implementation of the renaming relation e1 ≡ e2 is based on that of
Jonsson. The algorithm keeps a work list that contains tuples of expressions
(initially set to [{e1, e2}]). It takes tuples off the list, checking that they have
the same type (e.g. both are function calls, or the same constant). If they do
not have the same type then obviously there is no renaming. Subexpressions are
added to the work list. If the two expressions are variables then a substitution
from the first to the second variable is created and applied to the rest of the
work list. The substitutions are accumulated and finally applied to the e2. If
the result is equal to e2 then there is a renaming.

3.4.6 Ensuring termination

The improved supercompiler will terminate for many programs, but there are
programs which it will keep driving forever. These are programs where a re-
naming never happens, in particular because some parameter in the program is
growing. The result is an infinite stream of expressions that only change slightly,
but enough so that there are no renamings. An example is shown in listing 3.6.

There are a few approaches one can take to this problem. The driving
algorithm could be limited to a specific number of steps. Since the supercompiler
always can stop safely an arbitrary limit can be set after which the supercompiler
simply returns the program as it looks at that point.

22

drive_call(Env0, Funterm, Line, Name, Arity, Fun0, R) ->

L = plug(Funterm, R),

FV = free_variables(Env0#env.bound, L),

case find_renaming(Env0, L) of

{ok,Fname} ->

Expr={’call’,Line,{atom,Line,Fname},

[{var,Line,X} || X <- FV]},

{Env0#env{found=[Fname|Env0#env.found]},Expr};

_ ->

{Env1,Fname} = gensym(Env0, Env0#env.name),

{Env2,Fun} = alpha_convert(Env1, Fun0),

Env3 = Env2#env{ls = [{Fname,L}|Env2#env.ls]},

{Env4,E} = drive(Env3, Fun, R),

{Env5,S} = fresh_variables(Env4, dict:new(), FV),

Head = [subst(S, {var,Line,X}) || X <- FV],

Body = subst(S, E),

NewFun0 = {’fun’,Line,

{clauses,[{clause,Line,Head,[],[Body]}]}},

NewTerm = {’call’,Line,{atom,Line,Fname},

[{var,Line,X} || X <- FV]},

{Env6,NewFun} = alpha_convert(Env5, NewFun0),

Letrec = make_letrec(Line,

[{Fname,fun_expr_arity(NewFun),NewFun}],

[NewTerm]),

{Env6#env{ls=Env2#env.ls},Letrec}

end.

Listing 3.5: Driving of named functions with a check for renamings.

%% Given this definition of rev/2:

rev([],Ys) -> Ys;

rev([X|Xs], Ys) -> rev(Xs, [X|Ys]).

%% During driving these expressions are generated:

rev(Xs0, [X0|Ys])

rev(Xs1, [X1,X0|Ys])

rev(Xs2, [X2,X1,X0|Ys])

rev(Xs3, [X3,X2,X1,X0|Ys])

%% Ad infinitum.

Listing 3.6: The reverse function gives a series of expressions that keep growing.

23

whistle(E1, E2) ->

peel(E1, E2) orelse

lists:any(fun (E) -> whistle(E1, E) end,

the subexpressions of E2).

peel(E1, E2) when E1 and E2 have different types -> false;

peel(E1, E2) when E1 and E2 have different number

of subexpressions -> false;

peel(E1, E2) when E1 and E2 are different named

functions -> false;

peel(E1, E2) when E1 and E2 are constants -> true;

peel(E1, E2) ->

Es1 and Es2 = subexpressions of E1, E2,

lists:all(fun ({E1,E2}) -> whistle(E1, E2) end,

lists:zip(Es1, Es2)).

Listing 3.7: The whistle in Erlang pseudo code.

A more common technique used with supercompilers relies on the homeo-
morphic embedding relation e1 E e2, also known as the whistle. This method
uses the same list of expressions as used by the renaming check and is done
after that check. Its job is to find old expressions that are the same as the new
expression, except that the new expression may have additional code wrapped
around some subexpression (in listing 3.6 the additional code is an extra element
in the list).

The implementation of the whistle is similar to its definition (see section 2.2).
An outline of an implementation is shown in listing 3.7. The whistle function
first tries to match up the expressions with peel. If that fails it checks if the
whistle blows on a subexpression of E2 instead. This is the part of the algorithm
where it can accept an additional element inside of a list, or some other growth.

The whistle is a conservative approximation to the problem of making the
supercompiler always terminate [2]. In other words, it sometimes happens that
the whistle finds an old expression embedded in a new expression, but the driving
would have terminated on its own anyway. When this happens the quality of
the residual program is not as good as it would otherwise have been.

3.4.7 Improved driving on early termination

The whistle is guaranteed to trigger on all programs that the supercompiler
would otherwise have driven forever2 and with the addition of the whistle the
supercompiler will always terminate. At this point it is safe to merely return
the new expression.

If the whistle triggers then the new expression (the context with the function
name plugged into it) is the same as an old expression, except it contains an
extra list item, or an extra function call, or perhaps an extra addition. This
difference between the expressions is where the growth comes from and it is the

2The whistle may trigger even though the supercompiler would have terminated. See
section 2.2.

24

reason why the supercompiler would not have terminated. Instead of returning
the new expression verbatim, a better idea is to remove the growing part and
keep driving. The supercompiler will still terminate and it may even find more
improvements.

So the problem becomes how to remove the part of the code that is growing.
The supercompiler has a new expression and an old one, and placed side-by-
side you can see where the growth is (e.g. an additional item in a list, as in
listing 3.6). The way supercompilers extract the differences between expressions
is by using the most specific generalisation (msg). If the msg generalises the
whole expression to a variable they do a split instead.

The msg as used in [19] takes two expressions and returns a new expression
and a substitution, {E3,S} = msg(E1,E2). In the new expression the differences
between E1 and E2 have been replaced by fresh variables. The variables can all
be found in S, and if S were to be applied to E3 one would get back E1. This
means the growing parts of E1 are all gone from E3 and can instead be found in
S. If E1 is the code foo(X,bar(Y)) and E2 is foo(X,Y), then E3 is foo(X,V1)

and S maps V1 to bar(Y).
The idea is to drive E3 and each of the expressions from the substitution S,

and then put the whole thing back together by applying the new S to the new
E3. This means that the differences between E1 and E2 are driven separately
and therefore the supercompiler will not create forever growing code.

If E1 and E2 are different types of expressions (perhaps E1 is an addition and
E2 is found somewhere in one of its operands), then the whole of E3 will be a
fresh variable. This is a problem because then S will contain E1 verbatim, and
that is the expression that triggered the whistle. The idea was to take out the
growing parts from E1, but now the supercompiler got E1 back. The alternative
to msg is the split, which replaces all subexpressions of E1 with fresh variables.
If E1 is foo(X,bar(Y)) then E3 would be V1(V2,V3) and S maps V1 to foo, V2
to X and V3 to bar(Y). These alternative versions of E3 and S are then handled
as those returned by msg were handled.

The fresh variables created by msg and split can refer to any kind of ex-
pression whatever. For this reason the environment record contains a set of all
currently used such variables. This is then used in e.g. the function that returns
true if an expression is guaranteed to terminate. Normally a variable reference
would always terminate, but this is not necessarily true if the variable comes
from msg or split.

The implementation of split is straightforward. This is a non-recursive func-
tion that dispatches on the expression type. For a function call it replaces the
operator and the operands with fresh variables and creates the appropriate sub-
stitution. The implementation of msg is only slightly trickier. If the expressions
are exactly the same then it returns the expression and an empty substitution.
There is a default case for when the expressions are of different types, and here
it replaces the whole expression with a variable. If the expressions do have
the same type (e.g. both are a function call to the same function), then it calls
msg recursively on the subexpressions and collects the differences between them
while accumulating a substitution.

Both the msg and the split are approximations and they can be more ag-
gressive than what is strictly necessary to get rid of the growing code. The msg
compares two expressions, but it does not have any special knowledge of what
differences are crucial to stopping the infinite growth. The split truly has no

25

idea at all, it merely extract subexpressions. In our implementation we have, at
the suggestion of Jonsson, added a special case to split. The special case is for
append, which triggers the whistle unnecessarily, and it turns only the second
argument into a fresh variable. This was necessary to get a nice result for the
string to UTF-8 encoder.

3.4.8 Deforestation

In the introduction chapter it was claimed that a supercompiler can derive the
ideal version of the UTF-8 encoder. There are a few pieces missing before the
supercompiler can do that. The full supercompiler has rules for handling case
expressions, rules that eliminate or improve them. It also has rules for focusing
on the case scrutinee. In listing 1.3 the interesting case expression comes from
the definition of lists:flatten.

Let us look at what is needed in order to eliminate the intermediate lists from
the UTF-8 encoder in listing 1.3. Listing 3.8 starts with the focusing rule for case
expressions. The case expression is added to the context and the supercompiler
goes on to drive the scrutinee expression. After driving the scrutinee a while
it will find a list constructor, which is handled by the second rule. The cons
expression is handled like a function call, even though cons is primitive syntax
in Erlang. The make call function recognises the special constructor notation
and creates a cons rather than a function call.

The third rule in listing 3.8 is triggered when the supercompiler has focused
on a cons and the reduction context contains the arguments to the cons and a
case expression. The rule tries to find the clause that matches the constructor
(taking any guards and other complications into consideration). If it finds a
matching clause then there are likely going to be a few variables in the pat-
tern of that clause, and they need to be bound to the corresponding parts of
the constructor expression (e.g. the pattern [X|Xs] would bind X to the Head

expression and Xs to the Tail expression). It does this by constructing a let
expression that it then drives.

The UTF-8 encoder in listing 1.3 only encodes a single codepoint. During the
testing of the supercompiler the actual program used has been flatten(map(fun

to utf8/1, S)), using local definitions of flatten and map. The case expres-
sions come from code inside flatten and map. The case expressions are added
to the context, which is passed around until it reaches the cons expressions in
to_utf8/1. This means that the case and the cons will meet and trigger the
third rule of listing 3.8, even though they may not be in direct contact with
each other in the source code of the program.

The supercompiler also has a rule for rebuilding case expressions. The code
for this rule does not make for great viewing, but there is an important detail
that deserves to be mentioned. The build rule for case expressions drives the
bodies of the clauses in the surrounding reduction context. This means that
it can move code that was previously on the outside of the case expression
(i.e. code that was going to use the value returned by the case) to inside the
clauses of the case. This lets the supercompiler push the consumer of a value
(e.g. a case expressions) even closer to the producer (e.g. a cons expression).

If the third rule of listing 3.8 is triggered then the residual program contains
one less constructor call. This is how the supercompiler can remove intermediate
lists from a program.

26

drive(Env, {’case’,Line,Expr,Clauses}, R) ->

drive(Env, Expr, [#case_ctxt{line=Line, clauses=Clauses}|R]);

drive(Env, {cons,Line,Head,Tail}, R) ->

drive(Env, {constructor,Line,cons},

[#call_ctxt{line=Line, args=[Head,Tail]}|R]);

drive(Env, E0={constructor,L,Cons},

Ctxt=[#call_ctxt{args=Args},

#case_ctxt{clauses=Clauses}|R]) ->

E = make_call(L, E0, Args),

case find_constructor_clause(Env#env.bound, E, Clauses) of

{ok,Lhss,Rhss,Body} ->

drive(Env, make_let(L, Lhss, Rhss, Body), R);

_ ->

build(Env, E0, Ctxt)

end;

Listing 3.8: Driving rules that work on case expressions.

3.4.9 Pattern matching

The rule that handles known constructors in case expressions is simple enough if
the pattern matching in the language is simple. In Erlang however the pattern
matching is in general not so straightforward. The current implementation
handles pairs, tuples, constants and free non-repeated variables.

If a variable appears more than once in a pattern then there is an implicit as-
sertion at runtime that forces the two occurrences to be equal. These assertions
are similar to explicit matches (X=Y), which can also occur in patterns. Bound
variables in patterns also result in an implicit assertion. A related difficulty is
guard sequences that reference pattern variables.

Pattern matching in Erlang is pervasive. The syntax that looks like assign-
ment (X=Y) is actually pattern matching. The supercompiler handles these by
transforming them into case expressions (thus reusing the logic for case expres-
sions). Where this is not possible it places them in the reduction context, since
the pattern acts as a consumer of values. Another place where pattern match-
ing shows up is in function arguments (the handling of which was discussed
in subsection 3.4.4). Pattern matching also shows up in list comprehensions.
These require no special logic in the driving algorithm because the supercom-
piler translates all list comprehensions into simpler code before it starts driving.

The implementation of pattern matching for case expressions works by re-
peated simplifications. The simplifications are more or less eliminating con-
stants or extracting bindings. A simple partial evaluator processes any guard
sequences. The algorithm has access to the scrutinee and the clauses, and tries
to eliminate the scrutinee, select one clause and return a set of bindings. Those
patterns which are difficult to handle are safely ignored, at the cost of worse
residual code.

27

3.5 Tidying up

The code that comes back from the driving function may be an improvement
over the original, but it is also likely to be more difficult to read. For a program
transformer to be an effective tool the programmer must know how to use it,
which means finding out what the tool has actually done. To this end the
implementation has a module that tries to make the residual program more
readable.

The fresh variables that gensym creates make the program more difficult to
read, because they contain a unique identifier. All top-level functions in Erlang
are closed, meaning the complete set of fresh variables used in a function are
also defined inside that function. All that is necessary is to find the complete
set of fresh variables in a function and give each one a better name.

Top-level functions in Erlang have multiple clauses, each one with its own
patterns, guards and body. To make the implementation of the supercompiler
simpler these are translated into case expressions. After the function has driven
these case expressions should be lifted back into the top-level function. The pass
that does this looks for top-level functions that only contain a case expression
and does the necessary rewriting.

The bodies of function clauses and the bodies of case expression clauses
are lists of expressions. These are easier to handle if they are rewritten into
explicit sequencing expressions that only contain two expressions. After the
supercompiler is finished with driving the sequencing expressions are flattened
back out into lists of expressions.

With these little fixes the residual program is quite readable, but there is
certainly more that could be done.

3.6 Summary

Supercompilation is achieved by a kind of partial evaluation. The supercompiler
creates new functions for expressions and emits calls to those functions when it
sees renamings of the expressions. This creates new functions and can eliminate
redundant computations. Whenever the program contains a computation that
consumes a value that computation is delayed and placed in a reduction context.
The context is passed around until it meets the producer of a value. If the
consumer and the producer match up then a redundant computation, such as a
memory allocation, can be eliminated.

These elements of supercompilation are essential. After that comes the ques-
tion of how to make the supercompile terminate every time. This is done by
using an approximation referred to as the whistle. It detects expressions that
are similar, except that one of them may have an extra list element or some-
thing else wrapped around some subexpression. This would indicate that the
supercompiler has gone into a loop where it will start generating ever growing
expressions. At this point the driving is stopped and the current expression is
split into smaller expressions which are driven instead.

The way expressions are split is by taking the most specific generalisation,
which extracts the differences between two expressions. If that fails then all
subexpressions are extracted. Neither approach is always going to extract only
those parts that are necessary to stop the infinite growth.

28

Most the functional parts of Erlang have been implemented in the super-
compiler. Some of the pattern matching has been too difficult to implement
fully using the chosen strategy, and when a program contains such patterns the
implementation will not be able to improve that particular part of the program.

The current implementation gets good results on those examples it has been
tested with, as will be shown in the next chapter.

29

Chapter 4

Results

The supercompiler has been implemented as described in the previous chapter.
The question of how to evaluate a supercompiler is an interesting one. Ideally
an optimisation should be tested on existing programs, but unfortunately the
supercompiler is missing support for some key language features. In light of
this a few small benchmark programs were used instead. The benchmarks have
previously appeared in the literature [19, 48], except for the to utf8 program.
The inputs to the benchmark programs were not static (in the sense used in
subsection 1.1.1), or there would have been an infinite speed-up. The program
running the benchmarks was inspired by a similar program from [5].

Each benchmark is centred around a small expression that the supercompiler
is tasked to improve. Table 4.1 shows the improvement in wall clock time
over the non-supercompiled program (e.g., the append3 benchmark ran 1.43
times faster when supercompiled). Table 4.2 shows the reduction in memory
allocations (where the number is 0.00, that means nearly all memory allocations
were eliminated through supercompilation).

The performance increase was determined by measuring and comparing the
time it took to run a benchmark for a large number of iterations. The bench-
marks were timed repeatedly until they had settled near a minimum time, thus
minimising the effect of variations caused by other software or by hardware.
The benchmarks were compiled and run with Erlang R15B01 (erts-5.9.1) on an
otherwise unloaded AMD FXTM-8120 Eight-Core Processor with DDR3-1600
MHz CL9 memory. The programs were compiled both using the standard byte-
code compiler BEAM [14] and the HiPE compiler [15, 42] that produces native
machine code.

A manual inspection of the supercompiled programs showed that the ex-
pected transformations had occurred in all but the sumsqs lc program. As
shown in table 4.3, this program uses a list comprehension. The way the super-
compiler desugars list comprehensions can cause the whistle to stop the driving
too early. The result is a program that allocates just as much memory as the
original program. The HiPE compiler interestingly manages to make the su-
percompiled program 12% faster than the original, whereas with BEAM the
supercompiled program is slower.

The append3 and append3pp benchmarks append three lists. Note that
these programs first append Xs and Ys, and then append Zs. The better option
is to first append Ys and Zs, and finally append Xs to the result. The bench-

30

marks as they are written unnecessarily create a temporary list that the second
append operation consumes. This is done quite intentionally, as one expects
the supercompiler to correct this deficiency. Manual inspection of the optimised
programs show that this transformation happens.

There are two variants of the append benchmark because Erlang also has
a built-in append operator. The supercompiler translates this into a call to
an append function it provides. This is done so that the supercompiler can
transform the append in the expected manner. The numbers for append3pp
in table 4.1 show that an append written in Erlang is unable to compete with the
built-in append operator. The decrease in performance is not as bad when HiPE
is used, but it is still far away from the performance increase one might hope
for. Because the supercompiler removes one pass over the list Xs [19], increasing
the size of that list may tip the balance in favour of the supercompiler, but this
has not been explored.

The vecdot and vecdot int programs differ in that the first uses floating
point and the latter small integers. It appears that Erlang currently allocates
memory for floating point computations, as one may note from the numbers in
table 4.2. The vecdot int program does not allocate garbage, whereas the vecdot
program has had only a 46% reduction in allocations compared with the non-
supercompiled program. This shows that the supercompiler has transformed the
program as expected, but that the improvement had no effect on how floating
point computations are performed.

The rest of the benchmarks behave as expected. The flip flips a tree twice
and then sums the nodes. In the supercompiled program the tree flipping is
gone and only a direct summation of the nodes remains. The sumsqs program
is transformed into a (non tail-recursive) program that computes the result
directly. Similarly the supercompiled sumsqtr program computes the squares
of the nodes of a tree directly.

The to utf8 benchmark is UTF-8 encoder from the introduction chapter
(listing 1.3) extended to handle strings. This was done by using the functions
map and flatten, as one might do in a functional programming language. The
supercompiler not only derives a version of the UTF-8 encoder equivalent to
listing 1.4 (although it is less easy on the eyes), it also integrates the additional
map and flatten functions. A cleaned up version of the residual program can
be found in the appendix. The performance increase is respectable: the super-
compiled program is 8-9 times faster. All intermediate lists have been removed.

31

Benchmark Bytecode (BEAM) Native code (HiPE)
append3 1.43 1.37
append3pp 0.60 0.75
flip 4.01 3.69
sumsqs 1.80 2.65
sumsqs lc 0.93 1.12
sumsqtr 1.97 2.74
to utf8 8.80 7.09
vecdot 1.91 1.42
vecdot int 2.17 2.09

Table 4.1: Performance increase with supercompilation. Computed from the
wall clock time for the non-supercompiled program divided by wall clock time
for the supercompiled program.

Benchmark Remaining allocations
append3 0.67
append3pp 0.66
flip 0.00
sumsqs 0.00
sumsqs lc 1.00
sumsqtr 0.00
to utf8 0.18
vecdot 0.54
vecdot int 0.00

Table 4.2: Reduction in memory allocations. Computed from the amount of
garbage generated by running the supercompiled program divided by the same
for the non-supercompiled program.

Benchmark Core expression
append3 append(append(Xs, Ys), Zs)

append3pp (Xs ++ Ys) ++ Zs

flip sumtr(flip(flip(X)))

sumsqs sum(map(fun (X) ->X * X end, Xs))

sumsqs lc sum([X * X || X <- Xs])

sumsqtr sumtr(squaretr(X))

to utf8 flatten(map(fun to_utf8/1, S))

vecdot sum(zipwith(fun (X, Y) ->X * Y end, Xs, Ys))

vecdot int sum(zipwith(fun (X, Y) ->X * Y end, Xs, Ys))

Table 4.3: The core expressions of the benchmarks.

32

Chapter 5

Discussion

A supercompiler is now available for a widely used language, it is easy to in-
voke, it works as expected on examples from the literature and the residual
programs are readily inspected. The supercompiler is not yet ready to take
on existing Erlang programs, but the basics are all there. The availability of
the supercompiler and the documentation provided by this report lowers the
supercompilation learning curve.

The Erlang supercompiler is available online at http://weinholt.se/.

5.1 Related work

Others have worked on optimising Erlang and there are also a few supercompiler
implementations.

• Optimisation of Erlang at a lower level has been treated by Stenman [42].
He describes HiPE, an optimising native code compiler for Erlang. He
also shows some techniques for improving the performance of Erlang’s
concurrency features, including a transformation that can partially merge
a sender and a receiver.

• The supercompilation algorithm used in this work has previously been
implemented by Jonsson and Nordlander for the languages Haskell and
Timber [19].

• Klyuchnikov has published HOSC, a supercompiler for a lazy higher-order
functional language [27]. Its source code is available online and the paper
contains a complete and formal description of the supercompiler.

• Mitchell’s Supero is a supercompiler for a simplified core of Haskell [31].
Supero uses a new termination test and it has been designed to be simple.

5.2 Future work

As has been previously mentioned the supercompiler algorithm used does not
handle side-effects. In an Erlang program side-effects can come from message

33

http://weinholt.se/

passing or from calling other modules. It would be interesting to investigate
just what happens to the side-effects in a supercompiled program.

Before support for side-effects can be considered the implementation needs
to be extended to handle more of Erlang’s constructs. Currently the implemen-
tation is missing support for receive expressions. These need to be added in a
few functions that pattern match on the type of an expression, e.g. the alpha
conversion function and the splitting function. Additionally support for records
and other miscellaneous syntax should be implemented.

One of the problems with the current implementation is how it handles list
comprehensions. The way they are currently translated causes the whistle to
trigger prematurely. The sumsqs lc benchmark shows that the resultant split
makes the code worse than it could be. There are more intricate strategies for
translating list comprehension [18], and it is possible that these will not cause
any problems with the whistle. But the supercompiler should ideally be able to
derive the code used by the more intricate strategy all by itself.

Another way to tackle the problem of list comprehensions is then to improve
the whistle or the generalisations. Jonsson suggested a heuristic to improve
the splitting of append as used by flatmap [20], but there is still room for
improvement. It is possible that the generalisation in [30] is capable of handling
the kind of code generated from list comprehensions.

The problems with list comprehensions was found by looking at what the
supercompiler did to some small examples. The supercompiler should really
be tested on existing programs. Before this is done it is difficult to say how
common the problems with the whistle and generalisations will be.

The way pattern matching is handled by the implementation leaves a lot to
be desired. Repeated simplifications works out well for small examples, but a
quick look at existing Erlang code indicates that explicit matches in patterns is
quite common. The current implementation is also incapable for handling the
kind of code used in [4]. In retrospect a unification algorithm [32] should have
been used.

The ability to run the supercompiler on existing programs would also provide
a better way of benchmarking it. The benchmarks used are typical of the ones
used in the literature on supercompilation. The intent is not really to show that
the supercompiled program is much faster, it is rather to show that the desired
transformations take place. It is questionable if a programmer would actually
write code like that used in the benchmarks if performance was an issue.1

It would be quite interesting to look at some of the other uses for a supercom-
piler. The supercompiler has been implemented without using any side-effects,
in the hope that it one day will be capable of self-application, i.e. capable of su-
percompiling itself. This would allow it to be used for the higher-level Futamura
projections [4]. If unification is implemented then it should be possible to use
the first Futamura projection, which could turn interpreters into compilers that
generate Erlang code. It should already be capable of producing some inductive
proofs as in [44], but this needs further investigation.

There are improvements to the supercompiler algorithm that should be in-
vestigated. There is a strengthened algorithm that is capable of removing more
intermediate data [22] and there is a technique that stops code explosion [23],

1On the other hand, if a good supercompiler is widely available and its properties well
known, programmers may be more likely to let the supercompiler take care of the performance.

34

which is when the supercompiled program becomes much larger than it should
be.

Looking beyond supercompilation there is a stronger technique called dis-
tillation [10, 11, 12]. This transformation is capable of superlinear speedups,
i.e. improvements that decrease the Big-O time complexity of a program. Dis-
tillation looks quite promising and is certainly one possible direction for future
work.

35

Appendix A

Residual programs

String to UTF-8 encoder

This string to UTF-8 encoder is based on the one-character UTF-8 encoder in
listing 1.4. The original expression is flatten(map(fun to_utf8/1, S)). The
supercompiler derives a version that does not use intermediate lists. The code
shown below has been cleaned up slightly to make it easier to read. A compiler
will have no trouble generating the same code for the non-cleaned up version as
for the version presented here.

string_to_utf8([]) ->

[];

string_to_utf8([X|Xs]) ->

case X of

Code when Code < 16#80 ->

B = Code,

[B|string_to_utf8(Xs)];

Code0 when Code0 < 16#800 ->

B0 = (Code0 bsr 6) bor 16#C0,

B1 = Code0 bor 16#80,

[B0,B1 band 16#BF|string_to_utf8(Xs)];

Code1 when Code1 < 16#10000 ->

B2 = (Code1 bsr 12) bor 16#E0,

B3 = (Code1 bsr 6) bor 16#80,

B4 = Code1 bor 16#80,

[B2,B3 band 16#BF,

B4 band 16#BF|string_to_utf8(Xs)];

Code2 ->

B5 = (Code2 bsr 18) bor 16#F0,

B6 = (Code2 bsr 12) bor 16#80,

B7 = (Code2 bsr 6) bor 16#80,

B8 = Code2 bor 16#80,

[B5,B6 band 16#BF,B7 band 16#BF,

B8 band 16#BF|string_to_utf8(Xs)]

end.

36

Append three lists

The original expression is (Xs ++ Ys) ++ Zs. Note that the way the braces
are placed means an intermediate list is constructed and then discarded. In the
supercompiled version this redundancy is gone.

ap([], Ys, Zs) ->

case Ys of

[] ->

Zs;

[X|Xs] ->

[X|ap2(Xs, Zs)]

end;

ap([X|Xs], Ys, Zs) ->

[X|ap(Xs, Ys, Zs)].

ap2([], Zs) ->

Zs;

ap2([X|Xs], Zs) ->

[X|ap2(Xs, Zs)].

Vector dot product

A common example is sum(zipwith(fun (X, Y) -> X * Y end, Xs, Ys)).
Originally from Kort’s thesis on deforestation [19, 31], this function has an
intermediate list which supercompilation removes.

vecdot([X|Xs], Ys) ->

case Ys of

[] ->

0;

[Y|Ys0] ->

X * Y + vecdot(Xs, Ys0)

end;

vecdot(_, _) ->

0.

37

Flip a tree twice and sum the nodes

In this example the original code is shown in the listing below.

sumtr({leaf,X}) ->

X;

sumtr({branch,L,R}) ->

sumtr(L) + sumtr(R).

flip({leaf,X}) ->

{leaf,X};

flip({branch,L,R}) ->

{branch,flip(R),flip(L)}.

flipsum(X) ->

sumtr(flip(flip((X)))).

The supercompiler removes the double call to flip(), and the residual pro-
gram does not allocate any structures at all:

flipsum({leaf,X}) ->

X;

flipsum({branch,L,R}) ->

flipsum(L) + flipsum(R).

38

Bibliography

[1] Joe Armstrong. Making reliable distributed systems in the presence of soft-
ware errors. PhD thesis, The Royal Institute of Technology, Stockholm,
Sweden, 2003.

[2] Maximilian Bolingbroke and Simon Peyton Jones. Supercompilation by
evaluation. In Proceedings of the third ACM Haskell symposium on Haskell,
Haskell ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[3] Edwin C. Brady and Kevin Hammond. Scrapping your inefficient engine:
using partial evaluation to improve domain-specific language implementa-
tion. In Proceedings of the 15th ACM SIGPLAN international conference
on Functional programming, ICFP ’10, pages 297–308, New York, NY,
USA, 2010. ACM.

[4] Yoshihiko Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Higher-Order and Symbolic Computation,
12:381–391, 1999 (1971). Updated and revised.

[5] Abdulaziz Ghuloum. Ikarus Scheme User’s Guide. 2009.

[6] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to
deforestation. In Proceedings of the conference on Functional programming
languages and computer architecture, FPCA ’93, pages 223–232, New York,
NY, USA, 1993. ACM.

[7] Robert Glück and Andrei Klimov. Occam’s razor in metacomputation:
the notion of a perfect process tree. In Patrick Cousot, Moreno Falaschi,
Gilberto Filé, and Antoine Rauzy, editors, Static Analysis, volume 724
of Lecture Notes in Computer Science, pages 112–123. Springer Berlin /
Heidelberg, 1993.

[8] Robert Glück and Morten Sørensen. A roadmap to metacomputation by
supercompilation. In Olivier Danvy, Robert Glück, and Peter Thiemann,
editors, Partial Evaluation, volume 1110 of Lecture Notes in Computer
Science, pages 137–160. Springer Berlin / Heidelberg, 1996.

[9] Geoffrey William Hamilton. Higher order deforestation. In Herbert Kuchen
and S. Doaitse Swierstra, editors, Programming Languages: Implementa-
tions, Logics, and Programs, volume 1140 of Lecture Notes in Computer
Science, pages 213–227. Springer Berlin / Heidelberg, 1996.

39

[10] Geoffrey William Hamilton. Distillation: extracting the essence of pro-
grams. In Proceedings of the 2007 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, PEPM ’07, pages
61–70, New York, NY, USA, 2007. ACM.

[11] Geoffrey William Hamilton. Extracting the essence of distillation. In Amir
Pnueli, Irina Virbitskaite, and Andrei Voronkov, editors, Perspectives of
Systems Informatics, volume 5947 of Lecture Notes in Computer Science,
pages 151–164. Springer Berlin / Heidelberg, 2010.

[12] Geoffrey William Hamilton and Neil D. Jones. Distillation with labelled
transition systems. In Proceedings of the ACM SIGPLAN 2012 workshop
on Partial evaluation and program manipulation, PEPM ’12, pages 15–24,
New York, NY, USA, 2012. ACM.

[13] David Harriman. The Logical Leap: Induction in Physics. New American
Library, 2010.

[14] Bogumil Hausman. Turbo Erlang: Approaching the speed of C. pages
119–135. Kluwer Academic Publishers, 1994.

[15] Erik Johansson, Mikael Pettersson, and Konstantinos Sagonas. A high
performance Erlang system. In Proceedings of the 2nd ACM SIGPLAN
international conference on Principles and practice of declarative program-
ming, PPDP ’00, pages 32–43, New York, NY, USA, 2000. ACM.

[16] Thomas Johnsson. Lambda lifting: Transforming programs to recursive
equations. In Jean-Pierre Jouannaud, editor, Functional Programming Lan-
guages and Computer Architecture, volume 201 of Lecture Notes in Com-
puter Science, pages 190–203. Springer Berlin Heidelberg, 1985.

[17] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International, 1993.

[18] Simon Peter Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987.

[19] Peter A. Jonsson. Time- and Size-Efficient Supercompilation. PhD thesis,
Lule̊a University of Technology, Lule̊a, Sweden, 2011.

[20] Peter A. Jonsson. Private communication, 2012.

[21] Peter A. Jonsson and Johan Nordlander. Positive supercompilation for a
higher order call-by-value language. In Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’09, pages 277–288, New York, NY, USA, 2009. ACM.

[22] Peter A. Jonsson and Johan Nordlander. Strengthening supercompilation
for call-by-value languages. In Andrei P. Nemytykh, editor, Proceedings of
the second International Valentin Turchin Memorial Workshop on Meta-
computation in Russia, pages 64–81. Ailamazyan University of Pereslavl,
July 2010.

40

[23] Peter A. Jonsson and Johan Nordlander. Taming code explosion in su-
percompilation. In Proceedings of the 20th ACM SIGPLAN workshop on
Partial evaluation and program manipulation, PEPM ’11, pages 33–42, New
York, NY, USA, 2011. ACM.

[24] Andrei V. Klimov. An approach to supercompilation for object-oriented
languages: the Java supercompiler case study. In Andrei P. Nemytykh,
editor, Proceedings of the first International Workshop on Metacomputation
in Russia, pages 43–53. Ailamazyan University of Pereslavl, July 2008.

[25] Andrei V. Klimov. A Java supercompiler and its application to verification
of cache-coherence protocols. In Amir Pnueli, Irina Virbitskaite, and Andrei
Voronkov, editors, Ershov Memorial Conference, volume 5947 of Lecture
Notes in Computer Science, pages 185–192. Springer, 2010.

[26] Ilya Klyuchnikov and Sergei Romanenko. Proving the equivalence of higher-
order terms by means of supercompilation. In Amir Pnueli, Irina Virbit-
skaite, and Andrei Voronkov, editors, Perspectives of Systems Informatics,
volume 5947 of Lecture Notes in Computer Science, pages 193–205. Springer
Berlin / Heidelberg, 2010.

[27] Ilya G. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Technical
Report Preprint 63, Keldysh Institute of Applied Mathematics, 2009.

[28] Michael Leuschel. Homeomorphic embedding for online termination of sym-
bolic methods. In Torben Mogensen, David Schmidt, and I. Sudborough,
editors, The Essence of Computation, volume 2566 of Lecture Notes in
Computer Science, pages 379–403. Springer Berlin / Heidelberg, 2002.

[29] Henry Massalin. Synthesis: An Efficient Implementation of Fundamental
Operating System Services. PhD thesis, Columbia University, 1992.

[30] Neil Mitchell. Transformation and Analysis of Functional Programs. PhD
thesis, University of York, 2008.

[31] Neil Mitchell. Rethinking supercompilation. In Proceedings of the 15th
ACM SIGPLAN international conference on Functional programming,
ICFP ’10, pages 309–320, New York, NY, USA, 2010. ACM.

[32] Stuart Russell and Peter Norvig. Artificial Intelligence: A modern ap-
proach. Prentice Hall, 2009.

[33] Jens P. Secher and Morten Heine Sørensen. On perfect supercompilation. In
Proceedings of the Third International Andrei Ershov Memorial Conference
on Perspectives of System Informatics, PSI ’99, pages 113–127, London,
UK, UK, 2000. Springer-Verlag.

[34] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, May 1991.

[35] Morten Heine Sørensen. Turchin’s supercompiler revisited - an operational
theory of positive information propagation. Master’s thesis, University of
Copenhagen, Copenhagen, Denmark, 1996. Revised edition.

41

[36] Morten Heine Sørensen. Convergence of program transformers in the metric
space of trees. Sci. Comput. Program., 37(1-3):163–205, May 2000.

[37] Morten Heine Sørensen and Robert Glück. An algorithm of generalization
in positive supercompilation. In Proceedings of ILPS’95, the International
Logic Programming Symposium, pages 465–479. MIT Press, 1995.

[38] Morten Heine Sørensen and Robert Glück. Introduction to supercompila-
tion. In Partial Evaluation – Practice and Theory, DIKU 1998 Interna-
tional Summer School, pages 246–270, London, UK, 1999. Springer-Verlag.

[39] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A positive su-
percompiler. Journal of Functional Programming, 6:811–838, 1993.

[40] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. Towards unify-
ing partial evaluation, deforestation, supercompilation, and GPC. In Pro-
ceedings of the 5th European Symposium on Programming: Programming
Languages and Systems, ESOP ’94, pages 485–500, London, UK, 1994.
Springer-Verlag.

[41] Michael Sperber. Self-applicable online partial evaluation. In Olivier Danvy,
Robert Glück, and Peter Thiemann, editors, Partial Evaluation, volume
1110 of Lecture Notes in Computer Science, pages 465–480. Springer Berlin
/ Heidelberg, 1996.

[42] Erik Stenman. Efficient Implementation of Concurrent Programming Lan-
guages. PhD thesis, Uppsala Universitet, 2002.

[43] Josef Svenningsson. Shortcut fusion for accumulating parameters & zip-like
functions. In Proceedings of the seventh ACM SIGPLAN international con-
ference on Functional programming, ICFP ’02, pages 124–132, New York,
NY, USA, 2002. ACM.

[44] Valentin F. Turchin. The use of metasystem transition in theorem prov-
ing and program optimization. In Jaco Bakker and Jan Leeuwen, editors,
Automata, Languages and Programming, volume 85 of Lecture Notes in
Computer Science, pages 645–657. Springer Berlin Heidelberg, 1980.

[45] Valentin F. Turchin. The concept of a supercompiler. ACM Transactions
on Programming Languages and Systems, 8(3):292–325, June 1986.

[46] Valentin F. Turchin. The algorithm of generalization in the supercompiler.
In D. Bjørner, A.P. Ershov, and N.D. Jones, editors, Partial Evaluation
and Mixed Computation, pages 531–549. North-Holland, 1988.

[47] Oscar Waddell. Extending the Scope of Syntactic Abstraction. PhD thesis,
Indiana University, 1999.

[48] Philip Wadler. Deforestation: transforming programs to eliminate trees.
In Proceedings of the Second European Symposium on Programming, pages
231–248, Amsterdam, The Netherlands, 1988. North-Holland Publishing
Co.

42

	Introduction
	Source-level optimisation
	Partial evaluation
	Deforestation
	Supercompilation

	Delimitations

	Supercompilation
	Overview of supercompilation
	The whistle
	Generalisation
	Supercompiling Erlang
	Summary

	Implementation
	Manipulating the program
	Adapting a supercompiler to Erlang
	Tools for working with expressions
	How to build an Erlang supercompiler
	Driving the program
	Reduction contexts
	Focusing creates contexts
	Driving function calls
	Improved driving of function calls
	Ensuring termination
	Improved driving on early termination
	Deforestation
	Pattern matching

	Tidying up
	Summary

	Results
	Discussion
	Related work
	Future work

	Residual programs

