
Arranging for Safety Checks with Hardware Traps

Göran Weinholt

March 2012

Abstract

Many programming languages are untyped and per-
form all type checks at run-time. This requires that
type information for objects is kept around for as
long as the objects are live. One way of achieving
this involves tagging all pointers with the type of
the object to which they refer. The compiler inserts
safety checks before all object references in order to
provide safe semantics and error reporting.

The run-time safety checks can however be ex-
pensive and compilers sometimes provide an option
to use unsafe semantics. The resulting programs
are faster and more compact, but there are some
obvious drawbacks. This paper describes a tech-
nique whereby a compiler can generate code that
arranges for the processor to perform safety checks.
The technique is usable on commodity hardware.

I. Introduction

When a programming language is untyped it be-
comes necessary to keep object type information
around at runtime. Some garbage collectors can
also require the use of runtime type information [1].
One method for storing this data is to add a header
to all objects [1, 2]. Another common technique is
to reserve some of the bits in machine words for use
as tags [1, 3, 4]. The tag can either be in the high
bits or in the low bits of the word. When the low
bits are used the system relies on the fact that ob-
jects are allocated on word-aligned addresses. This
makes two or three bits available to store a type [5].

Often one of the tags indicates that there is a
small integer encoded immediately in the machine
word [1, 6]. When the result of an arithmetic op-
eration is small enough there is no need to allocate
memory to store the result. These small integers
are sometimes referred to as fixed-point numbers or
fixnums [4, 3, 7]. On a machine with 64-bit words
and three tag bits the fixnum range is quite reason-
able.

© 2012 Göran Weinholt <goran@weinholt.se>. Per-

mission is granted to copy and redistribute this document

without modification provided that this notice is preserved.

In Lisp implementations one of the tags is of-
ten used for other miscellaneous types which can
be stored immediately in machine words, e.g. char-
acters and the empty list [5, 6]. The remaining tags
can be used to indicate that the machine word con-
tains a pointer to a specific type of object, e.g. a
pair, a vector, a procedure or some other common
type. One of the tags will need to indicate that the
real type of the object is stored somewhere else [6].

There are some disadvantages to tagging ma-
chine words in this way. For some operations the
tag must first be removed, a process known as un-
boxing [1]. The compiler must also insert explicit
checks before using an object in order to guarantee
memory-safe semantics. There have been several
approaches to solving this problem. One approach
is to use specialized hardware. The Symbolics 3600
had special hardware that performed type-checking
in parallel with the normal operations of the pro-
cessor [4]. Another example is the SPARC which
has the TADDcc and TSUBcc instruction that work
with fixnums [8].

Another approach comes from the software side.
There are a number of techniques available that let
the compiler generate code which does not need to
do any unboxing or safety checking. The language
can be extended with optional static typing and the
compiler can use type inference [9]. The compiler
can also provide different safety levels [10]. The de-
fault safety level generally guarantees memory-safe
semantics. When the programmer is comfortable
with the type safety of the program he can instruct
the compiler to generate faster code by removing
the safety checks.

This paper presents a novel technique that uses
a combination of software and existing commodity
hardware. The software arranges for the hardware
to automatically perform the safety checks with vir-
tually no overhead for programs without dynamic
type errors.

II. Alignment Checks

The widely available Intel IA-32 and AMD64 archi-
tectures have an optional feature called alignment

1

Listing 1: Code with an explicit safety check

mov ecx , edx

and cl , 7
cmp cl , 2
jne e r r o r
mov rax , [rdx − 2]

checking. When a program performs an unaligned
memory reference the processor will normally han-
dle this transparently. By setting the Alignment
Check (AC) flag in the processor’s flags register all
unaligned memory references will instead cause an
exception to be raised [11, 12]. This feature can be
used in combination with tags in the lower bits to
make unsafe code behave according to memory-safe
semantics.

The technique presented here relies on the use of
tags in the low bits, as described in the introduc-
tion. When memory is allocated for a new object
the system requests a free address and then adds
the tag to the least significant bits of the address.
Later when the object is used the code removes the
tag using the architecture’s built-in support for ad-
ditions and subtractions in memory references.

Most compilers using this tagging scheme will
generate explicit checks to make sure that the tag is
correct. Listing 1 shows what the code might look
like. Let’s suppose that pairs have the tag 0102 and
fixnums have the tag 0002. If the code expects a
pair it first masks off the lower three bits, compares
them to 0102 and finally branches to an error han-
dler if the tag does not match. If the procedure is
passed a fixnum instead of a pair the tag will not
match and it will be detected as an error. This
method requires an extra register to temporarily
hold the tag and there are now more instructions
than should be necessary. These safety checks must
in general be generated for every memory reference
if memory-safe semantics are required (except when
the compiler has inferred the type somehow).

When alignment checking is enabled this explicit
tag comparison is not needed. Suppose that the
code in listing 1 did not check the tag. If RDX is a
pair object then subtracting 0102 will result in an
effective address where the lower three bits are zero,
i.e. the memory reference is aligned. The compiler
and the runtime work together to guarantee that iff
the lower bits of a word are 0102 then the word must
point to a pair. If RDX is any kind of object other
than a pair then the code will compute an effec-
tive address where the lower bits are not zero. The
memory reference then becomes misaligned and the
processor raises an exception.

Alignment checking is a natural part of a proces-
sor’s operation. Misaligned memory references can
affect multiple cache lines or multiple pages and
this is handled transparently by the processor if
alignment checking is disabled [13]. Using align-
ment checking does therefore not appear to incur
any overhead as long as programs do not generate
an excessive number of exceptions.

III. Applications

How widely applicable the technique is depends on
whether the code is running in 32-bit mode or 64-
bit mode. For 32-bit mode the use is rather limited
because there are only four tags available and at
least two of those tags would be needed for mis-
cellaneous immediate and boxed objects. In the
64-bit mode there are eight tags available, so there
are that many more opportunities.

The alignment checking technique has been im-
plemented in an experimental compiler for the
Scheme language [7], which generates machine code
for the AMD64 instruction set. It stores type tags
in the lower bits of machine words. The tags it
uses identify objects that are fixnums, pairs, pro-
cedures, strings, vectors, bytevectors, records and
miscellaneous immediate types. The rest of this
section discusses how the technique is used in the
experimental compiler.
Given that pair objects (conses) are tagged it is

possible to implement car and cdr in a single in-
struction. This is the traditional unsafe implemen-
tation, but alignment checking ensures memory-
safe semantics. Higher-order programs can also
benefit from the technique. When the compiler gen-
erates code for calling a procedure with a statically
unknown entry point (e.g. a closure) it normally
needs to ensure that the object in the operator posi-
tion really is a procedure. When procedure objects
use one of the tags the check is done for free.

Let’s look at a concrete example of when align-
ment checking is useful. At the cost of a slight com-
plication in the error reporting routine it is possible
to implement a safe vector-ref in only three in-
structions. The vector-ref procedure is Scheme’s
array referencing primitive: it takes a vector ob-
ject and an index and returns the element at the
given index. In listing 2 the RDX register contains
the vector reference, RCX contains the index, and
the return value is to be stored in the RAX regis-
ter. The program could actually have any type of
object in RDX and RCX.
This code looks unsafe, but it’s not. The first

machine word in every vector is a fixnum which
represents the length of the vector. Following this

2

Listing 2: vector-ref using alignment checks

cmp rcx , [rdx − 6]
jnb e r r o r
mov rax , [rdx − 6 + rcx + 8]

Listing 3: Branchless and safe vector-ref

cmp rcx , [rdx − 6]
cmovnb rcx , rdx

mov rax , [rdx − 6 + rcx + 8]

are the elements of the vector. In this version of
vector-ref the comparison and move from mem-
ory instructions have dual purposes. If alignment
checking was disabled then this would be a decid-
edly unsafe implementation. It would only be mak-
ing sure that the index is in bounds. There would
be nothing to guarantee that the index actually is
a fixnum or that RDX is a vector object.

When alignment checking is enabled the code in
listing 2 becomes safe. The comparison instruction
has the side-effect of checking that RDX is a vector
object. The comparison together with the branch
implements an unsigned comparison on the index,
which is sufficient to verify that it is in bounds [14].
It does not yet check that the index is a fixnum,
so if the branch to the error handler is taken it is
possible that the index has some other type.

The last instruction in listing 2 loads the vector
element from memory and it also has the side-effect
of checking that the index is a fixnum. The dis-
placement part of this memory reference removes
the tag by subtracting 6 and adds 8 in order to
skip over the length word. The compare instruc-
tion already verified that RDX is a vector, so it is
known that the lower three bits of RDX are 1102.
This means that the only way that the last mem-
ory reference can be misaligned is if RCX is not a
fixnum. The code does all the safety checks and
references the vector only if the types are correct.

The traditional implementation of vector-ref

needs three branches: one to check that the vec-
tor really is a vector, one to check that the index
is a fixnum, and one to check that the index is
in bounds. The bounds check can be done with
only one compare and branch, but the author has
observed that many implementations needlessly do
two signed comparisons on the index. Using align-
ment checking therefore makes it possible to remove
two or three branches per vector-ref.

Is a completely branchless version possible? List-
ing 3 shows the ultimate general vector-ref. The

Listing 4: Code to enable alignment checking

pushf

or dword ptr [rsp] , 0 x40000
popf

first and last instructions are the same as before.
The branch is replaced by a conditional move. If the
index is out of bounds then the conditional move
overwrites RCX with the pointer to the vector and
the memory reference in the last instruction will
therefore be misaligned. One problem with this
approach is that it does not account for how to
accurately report the error. The original index is
unavailable to the exception handler because it has
been overwritten.

IV. Implementation details

Before entering the compiled code the runtime envi-
ronment enables alignment checking. This is done
with the code in listing 4.
After popf is finished the alignment check flag

is set in the flags register. Any misaligned memory
references performed by the program will now result
in an alignment check exception. The Linux kernel
translates this into a BUS signal, so a signal handler
must be installed.
It is possible for the program to raise other ex-

ceptions as well. The AMD64 architecture defines
a canonical address form. An address is canonical
if the most significant bits are all zero or all one.
How many bits are affected depends on how many
bits of virtual address space a particular proces-
sor supports [11]. A program can easily construct
a fixnum which corresponds to a non-canonical
address and then pass it to car. The result is
a general-protection exception which Linux trans-
lates into SEGV signal. It is also possible to trigger
a stack exception if the code generator uses RSP or
RBP in a trapping memory reference.
Linux allows user programs to distinguish be-

tween the different exception types by examining
the third argument to the signal handler. This ar-
gument is a ucontext t structure which contains the
state of the program at the time of the exception.
The REG TRAPNO field has the vector number
of the exception, which can be used to distinguish
between general-protection, page fault, alignment
check and other exceptions.
When the hardware finds an error the runtime

needs to raise an appropriate condition. The sig-
nal handler will need to examine the state of the
user program at the time of the signal to deter-

3

mine which operation it was trying to perform. One
possibility is to generate a table which contains an
entry for every instruction that can cause an ex-
ception. Another approach is implemented in the
experimental Scheme compiler. The runtime uses a
symbolic disassembler to find the instruction that
caused the exception. From this it is trivial to find
out if the instruction tried to reference a pair, a
vector, etc.
It should also be noted that alignment checking

requires operating system support. The AM bit
in the CR0 register must be set and the processor
must be executing in user mode [11].

V. Pitfalls

Using alignment checks may not be straightfor-
ward and there are some known drawbacks. When
adopting this technique in an existing compiler it is
necessary to vet the code generator and the runtime
for any misaligned memory references.
Programs for the AMD64 architecture will in

practice never run with alignment checking en-
abled. This means that the majority of existing
code has not been checked for misaligned memory
references, so alignment checks will need to be dis-
abled before entering external code, e.g. before for-
eign function calls or even C library calls.
Alignment checking is an underutilized feature

it might be missing in some processor implemen-
tations. This has been observed in valgrind [15]
and QEMU [16]. There is no problem for QEMU
when it runs with hardware support for virtualiza-
tion. It would be necessary to do check at startup
to see if the machine supports alignment checking.
The code could perform an intentionally misaligned
memory reference which is guarded by an excep-
tion handler. If the handler is not run the program
would print an error message and exit. A produc-
tion compiler will likely need to support machines
that do not have alignment checking.
A soft type system has been shown to eliminate

90% of type checks [9]. It is conceivable that a com-
piler which uses soft typing would generate code
with almost no opportunities for using the align-
ment check technique.

VI. Conclusion

Alignment checking can be used to perform some
dynamic type safety checks in a manner that used
to require specialized hardware. The actual effect
achieved will depend very much on what other kind
of analysis the compiler performs. The question of
how it affects performance is therefore left open.

Implementing the technique in an existing system
is non-trivial and would make the resulting code
unsafe when run in some emulators. It also appears
to be impractical on 32-bit systems.

VII. Acknowledgments

Christian Häggström came up with the branchless
version of vector-ref after having seen the version
with only one branch.

References

[1] Appel, A. W., “Runtime Tags Aren’t Nec-
essary,” Tech. Rep. CS-TR-142-88, Princeton
University, March 1988.

[2] Venstermans, K., Eeckhout, L., and Bosschere,
K. D., “Java object header elimination for re-
duced memory consumption in 64-bit virtual
machines,” ACM Trans. Archit. Code Optim.,
Vol. 4, September 2007.

[3] Steele Jr., G. L., “Data Representations in the
PDP-10 MacLISP,” Tech. Rep. AI Memo 420,
Massachusetts Institute of Technology, Artifi-
cial Intelligence Laboratory, September 1977.

[4] Moon, D. A., “Architecture of the Symbolics
3600,” Proceedings of the 12th annual interna-

tional symposium on Computer architecture,
ISCA ’85, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1985, pp. 76–83.

[5] Rees, J. A. and Adams IV, N. I., “T: A Dialect
of Lisp, or: LAMBDA: The Ultimate Software
Tool,” Proceedings of the 1982 ACM Sympo-

sium on Lisp and Functional Programming ,
August 1982, pp. 114–122.

[6] Dybvig, R. K., Eby, D., and Bruggeman, C.,
“Don’t Stop the BIBOP: Flexible and Efficient
Storage Management for Dynamically Typed
Languages,” Tech. rep.

[7] Sperber, M., Dybvig, R. K., Flatt, M., van
Straaten, A., Findler, R., and Matthews, J.,
“Revised6 Report on the Algorithmic Lan-
guage Scheme,” Journal of Functional Pro-

gramming , 2009, pp. 1–301.

[8] SPARC International, The SPARC Architec-

ture Manual Version 9 , Prentice Hall, 1994.

[9] Wright, A. K. and Cartwright, R., “A practi-
cal soft type system for scheme,” ACM Trans.

Program. Lang. Syst., Vol. 19, January 1997,
pp. 87–152.

4

[10] Verna, D., “How to make Lisp go faster than
C,” IAENG International Journal of Com-

puter Science, Vol. 32, 2006, pp. 499–504.

[11] AMD64 Architecture Programmer’s Manual ,
Advanced Micro Devices, 2011.

[12] Intel 64 and IA-32 Architectures Software De-

veloper’s Manual , Intel Corporation, 2011.

[13] Software Optimization Guide for AMD Fam-

ily 15h Processors , Advanced Micro Devices,
2012.

[14] Warren, Jr., H. S., Hacker’s Delight , Addison-
Wesley, 2003.

[15] Nethercote, N. and Seward, J., “Valgrind: a
framework for heavyweight dynamic binary in-
strumentation,” Proceedings of the 2007 ACM

SIGPLAN conference on Programming lan-

guage design and implementation, PLDI ’07,
ACM, New York, NY, USA, 2007, pp. 89–100.

[16] Bellard, F., “QEMU, a Fast and Portable
Dynamic Translator,” USENIX 2005 Annual

Technical Conference, FREENIX Track , April
2005, p. 41–46.

5

