
The Industria Libraries Manual

Göran Weinholt

This manual is for the Industria libraries, a collection of R6RS Scheme libraries.

Copyright c© 2010, 2011, 2012, 2013 Göran Weinholt goran@weinholt.se.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

mailto:goran@weinholt.se

i

Table of Contents

1 Getting started . 1
1.1 Installation . 1
1.2 Usage . 1
1.3 Conflicting names . 2

2 Library reference . 3
2.1 Executable file format utilities . 3

2.1.1 Parsers for the Executable and Linkable Format (ELF) 3
2.2 Data decompression . 12

2.2.1 Mark Adler’s Adler-32 checksum . 12
2.2.2 GZIP custom input port . 12
2.2.3 Decompress DEFLATE’d data . 13
2.2.4 A circular buffer attached to a data sink 14
2.2.5 XZ custom input port . 15
2.2.6 ZIP archive reader/writer . 15
2.2.7 ZLIB custom input port . 19

2.3 Cryptographic primitives . 20
2.3.1 Advanced Encryption Standard . 20
2.3.2 ARCFOUR stream cipher . 22
2.3.3 The Blowfish Cipher . 22
2.3.4 Cyclic Redundancy Codes . 23
2.3.5 Data Encryption Standard . 25
2.3.6 Diffie-Hellman key exchange . 26
2.3.7 Digital Signature Algorithm . 27
2.3.8 Elliptic Curve Cryptography . 29
2.3.9 Elliptic Curve Digital Signature Algorithm (ECDSA) 30
2.3.10 Entropy and randomness . 32
2.3.11 Message-Digest algorithm 5 . 32
2.3.12 OpenPGP signature verification . 34
2.3.13 Password hashing . 36
2.3.14 RSA public key encryption and signatures 37
2.3.15 Secure Hash Algorithm 1 . 40
2.3.16 Secure Hash Algorithm 2 . 40
2.3.17 SSH public key format conversion . 40
2.3.18 X.509 Public-Key Infrastructure . 41

2.4 Machine code disassemblers . 43
2.4.1 Intel 8080/8085 disassembler . 43
2.4.2 Freescale 68HC12 disassembler . 44
2.4.3 MIPS II disassembler . 44
2.4.4 Intel x86-16/32/64 disassembler . 44

2.5 Network protocols . 45
2.5.1 Internet Relay Chat . 45
2.5.2 Blowcrypt/FiSH encryption for IRC . 49

ii

2.5.3 Off-the-Record Messaging . 50
2.5.4 Secure Shell (SSH) . 54

2.5.4.1 Secure Shell Connection Protocol . 58
2.5.4.2 Secure Shell Transport Layer Protocol 68
2.5.4.3 Secure Shell Authentication Protocol 72

2.5.5 Basic TCP client connections . 75
2.5.6 Transport Layer Security (simple interface) 76

2.6 Binary structure utilities . 76
2.6.1 Binary structure packing and unpacking 77

2.7 Textual structure utilities . 79
2.7.1 Base64 encoding and decoding . 79
2.7.2 Internet address parsing and formatting 80

2.8 Data types and utilities . 81
2.8.1 Bytevector utilities . 81

3 Demo programs . 83
3.1 checksig – verifies OpenPGP signature files . 83
3.2 checksum – computes CRCs and message digests 83
3.3 fcdisasm – full-color disassembler . 83
3.4 honingsburk – simple Secure Shell honey pot 83
3.5 meircbot – the minimum-effort irc bot . 83
3.6 secsh-client – manually operated Secure Shell client 83
3.7 sunzip – zip archive extractor . 85
3.8 szip – zip archive creator . 85
3.9 tarinfo – tarball information lister . 85
3.10 tls-client – trivial HTTPS client . 85

Index . 86

Chapter 1: Getting started 1

1 Getting started

1.1 Installation

The short version: extend your Scheme library search path to include the industria direc-
tory, e.g. if you’re using Ikarus on a Unix system and you unpacked Industria in your home
directory:

export IKARUS_LIBRARY_PATH=$HOME/industria

Other possible environment variables include CHEZSCHEMELIBDIRS, LARCENY_LIBPATH,
MOSH_LOADPATH and YPSILON_SITELIB. For more details please refer to your Scheme im-
plementation’s documentation. An alternative is to move or symlink the weinholt directory
into a directory that already exists in your Scheme’s search path.

Releases are available at https://weinholt.se/industria/.

The development version of Industria is available in a Git repository. You can download
the development version like this:

git clone http://weinholt.se/git/industria.git/

Development snapshots are available at http://weinholt.se/gitweb/.

You will also need a number of SRFI libraries. If your Scheme does not come with a
collection of SRFIs already you can get them from the Scheme Libraries Team at Launchpad.

Another way to install the libraries is to use the Dorodango package manager. It’s
available at http://home.gna.org/dorodango/.

1.2 Usage

I’ll assume you’re familiar with Scheme already. To load an R6RS library into your program
or library, put it in the import specification. Here’s Hello World for R6RS Scheme:

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello World!\n")

The first line is useful on Unix systems, but it is specified in the R6RS Non-Normative
Appendices, so your Scheme might not accept programs with that line present.

Common file extensions for R6RS programs are .scm, .sps, .ss or no extension at all.
The (rnrs) library will normally be built-in and might not correspond to any file, but other
libraries are usually found by converting the library name into a file system path. Here’s
an example that uses the (weinholt crypto md5) library:

(import (rnrs)

(weinholt crypto md5))

(display (md5->string (md5 (string->utf8 (cadr (command-line))))))

(newline)

The md5->string and md5 bindings were imported from weinholt/crypto/md5.sls.
Here is how you might run the program with Ikarus:

$ ikarus --r6rs-script example.sps "a grand scheme"

A6FD66F0888EDCAC812D441EFE95E6C1

https://weinholt.se/industria/
http://weinholt.se/gitweb/
https://code.launchpad.net/~scheme-libraries-team/scheme-libraries/srfi
http://home.gna.org/dorodango/

Chapter 1: Getting started 2

1.3 Conflicting names

In some places the same name is exported by two libraries, even though they have different
bindings. Two disassemblers might both export a get-instruction procedure. In this case
it is useful to use prefix when importing the libraries, like this:

(import (rnrs)

(prefix (weinholt disassembler x86) x86:)

(prefix (weinholt disassembler arm) arm:))

Now the procedures will be called x86:get-instruction and arm:get-instruction.
This method can also be useful for keeping track of which library a binding comes from.
An alternative is to use rename:

(import (rnrs)

(rename (weinholt disassembler x86)

(get-instruction x86:dis))

(rename (weinholt disassembler arm)

(get-instruction arm:dis)))

Chapter 2: Library reference 3

2 Library reference

2.1 Executable file format utilities

2.1.1 Parsers for the Executable and Linkable Format (ELF)

The (weinholt binfmt elf) library contains parsers for the popular ELF file format used
in many operating systems. The format is used for executable files, relocatable object files
and shared object files. The library exports procedures that parse these files.

Many constants are also exported. The constants are described near the procedures that
return them. These constants may be used to construct ELF images, but this library does
not have any code for doing so.

ELF images contain three categories of data: the ELF header, programs headers and
section headers. The ELF header indicates the type of file. When an ELF executable
is loaded into memory the program headers are used to map from file offsets to virtual
memory addresses. The section headers contain information used by various tools. The
symbol table, relocation data, and everything else is stored in section headers.

The term “program header” was too cumbersome, so the shorter “segment” has been
used instead. The names of the exported constants are very similar to those given in the
ELF specifications. Underscores have been changed to minus signs.

Note: The library assumes that any ports given to it can handle port-position and
set-port-position!.

[Procedure]is-elf-image? input-port/filename
This procedures accepts either a filename or a binary input port. Returns #t if the
file or port starts with what looks like an ELF image. If it is not an ELF image #f is
returned. The port is returned to its previous position.

ELF-MAGIC

This constant contains the “magic” integer used at the start of ELF
images.

[Procedure]open-elf-image input-port/filename
This procedure accepts a filename or an binary input port. The ELF header at the
start of the file is parsed and returned as an elf-image object.

The returned object contains the input port that was used to read the header, so that
the rest of the procedures in this library do not need to take an extra port argument.
All other fields contain integers.

(import (weinholt binfmt elf))

(open-elf-image "/bin/ls")

⇒ #[elf-image #<input-port (binary) "/bin/ls">

2 1 0 0 262 1 4203856 64 106216 0 64 56 8 64 28 27]

[Procedure]make-elf-image port word-size endianness os-abi abi-version type
machine version entry phoff shoff flags ehsize phentsize phnum shentsize shnum
shstrndx

Contructs a new elf-image object. This procedure is normally not useful when reading
ELF images. No checks are performed on the arguments.

Chapter 2: Library reference 4

[Procedure]elf-image? obj
Returns #t if obj is an ELF image object.

[Procedure]elf-image-port image
If image was created by open-elf-image, then this returns the port that the ELF
header was read from.

[Procedure]elf-image-word-size image
Returns an integer that represents the word size of image. The order and size of fields
in the ELF format vary depending on the word size, but that is all hidden by this
library.

ELFCLASS32

The image is a 32-bit ELF image.

ELFCLASS64

The image is a 64-bit ELF images.

[Procedure]elf-image-endianness image
Returns an integer that represents the endianness of image. The byte order used in
ELF images is the same that is used by the machine that the image is intended to
run on.

ELFDATA2LSB

The image is in little endian format.

ELFDATA2MSB

The image is in big endian format.

[Procedure]elf-image-os-abi image
The Operating System ABI indicates which operating system image was created for.
The returned value might be one of the ELFOSABI-* constants.

ELFOSABI-SYSV

System V. An earlier version of ELF did not include the OS ABI field at
all and this value is the default.

ELFOSABI-HPUX

ELFOSABI-NETBSD

ELFOSABI-LINUX

Linux. (This does not actually seem to be used by Linux.)

ELFOSABI-SOLARIS

ELFOSABI-AIX

ELFOSABI-IRIX

ELFOSABI-FREEBSD

ELFOSABI-TRU64

ELFOSABI-MODESTO

ELFOSABI-OPENBSD

ELFOSABI-OPENVMS

ELFOSABI-NSK

ELFOSABI-AROS

Chapter 2: Library reference 5

[Procedure]elf-image-abi-version image
The version number of the Operating System ABI.

[Procedure]elf-image-type image
The type of the image. This might be one of the ET-* constants.

ET-NONE No type was specified.

ET-REL Relocatable object file.

ET-EXEC Executable object file.

ET-DYN Shared object file.

ET-CORE Core dump.

ET-LOOS Start of the environment-specific range.

ET-HIOS End of the environment-specific range.

ET-LOPROC

Start of the processor-specific range.

ET-HIPROC

End of the processor-specific range.

[Procedure]elf-image-machine image
Most ELF images contain executable code. This field specifies which machine type
(CPU architecture) is needed to run the code.

EM-NONE No machine type was given.

EM-M32

EM-SPARC

EM-386 The Intel 80386 and all its extensions. The 64-bit extensions use EM-X86-
64 instead.

EM-68K

EM-88K

EM-860

EM-MIPS

EM-MIPS-RS3-LE

EM-PARISC

EM-SPARC32PLUS

EM-PPC

EM-PPC64

EM-S390

EM-ARM

EM-SPARCV9

EM-IA-64

Chapter 2: Library reference 6

EM-68HC12

EM-X86-64

The AMD x86-64 architecture.

EM-68HC11

[Procedure]elf-image-version image
The ELF format version used. There is only one valid value for this field, EV-CURRENT.

EV-CURRENT

The current ELF version.

[Procedure]elf-image-entry image
The program entry point. When an operating system has loaded an ELF image (by
mapping the segments into virtual memory) it needs to know which address contains
the first instruction of the program.

[Procedure]elf-image-phoff image
The port position at which the first segment can be found. The name is short for
“program header offset”.

[Procedure]elf-image-shoff image
The port position at which the first section header can be found.

[Procedure]elf-image-flags image
This field can contain processor-specific flags.

[Procedure]elf-image-ehsize image
The size of the ELF header in bytes.

[Procedure]elf-image-phentsize image
The size of a segment header in bytes.

[Procedure]elf-image-phnum image
The number of segment headers contained in the ELF image.

[Procedure]elf-image-shentsize image
The size of a section header in bytes.

[Procedure]elf-image-shnum image
The number of section headers contained in the ELF image.

[Procedure]elf-image-shstrndx image
This is an index into the section headers table. It indicates which of the section
headers contains the names of all the section headers.

SHN-UNDEF

This is used when there is no reference to any section.

[Constant]elf-machine-names
This is an alist that contains human-readable names for all the exported EM-* con-
stants.

Chapter 2: Library reference 7

[Procedure]make-elf-section name type flags addr offset size link info addralign
entsize

Constructs a new elf-section object. These objects represent section headers and are
used to refer to the contents of the file. This procedure is normally not useful when
reading ELF images. No checks are performed on the arguments.

[Procedure]elf-section? obj
Returns #t if obj is an ELF section object.

[Procedure]elf-section-name section
Gives the name of section as an index into the section name table, which contains
#\nul terminated strings. The section name table is located by using elf-image-

shstrndx.

[Procedure]elf-section-type section
An integer representing the type of section.

SHT-NULL The section header is unused.

SHT-PROGBITS

The section contains executable code.

SHT-SYMTAB

The section contains a symbol table.

SHT-STRTAB

The section contains a string table.

SHT-RELA

SHT-HASH

SHT-DYNAMIC

SHT-NOTE

SHT-NOBITS

SHT-REL

SHT-SHLIB

SHT-DYNSYM

The section contains a symbol table with only the symbols needed for
dynamic linking.

SHT-LOOS Start of the environment-specific range.

SHT-HIOS End of the environment-specific range.

SHT-LOPROC

Start of the processor-specific range.

SHT-HIPROC

End of the processor-specific range.

[Procedure]elf-section-flags section
An integer representing a bitmask of flags for section.

Chapter 2: Library reference 8

SHF-WRITE

The section data will be writable when the program is running.

SHF-ALLOC

The section data will be mapped into memory when the program is run-
ning.

SHF-EXECINSTR

The section data contains executable instructions.

SHF-MASKOS

The bitmask for environment-specific flags.

SHF-MASKPROC

The bitmask for processor-specific flags.

[Procedure]elf-section-addr section
If section is mapped into memory when the program is running this field contains the
address at which it will be mapped.

[Procedure]elf-section-offset section
The port position at which the data of section can be found.

[Procedure]elf-section-size section
The length of the data of section. If the section type is not SHT-NULL then this
indicates the size of the segment in the image file.

[Procedure]elf-section-link section
This may contain a reference to another section.

[Procedure]elf-section-info section
This may contain extra information, depending on the type of section.

[Procedure]elf-section-addralign section
This specifies the alignment requirements of the data in section.

[Procedure]elf-section-entsize section
If section contains fixed-size entries then this is used to specify the size of those entries.

[Procedure]make-elf-segment type flags offset vaddr paddr filesz memsz align
Constructs a new elf-segment object. These objects represent program headers and
are used to refer to the contents of the file. This procedure is normally not useful
when reading ELF images. No checks are performed on the arguments.

[Procedure]elf-segment? obj
Returns #t if obj is an ELF segment object.

[Procedure]elf-segment-type segment
An integer representing the type of the segment.

PT-NULL This segment is unused.

PT-LOAD This segment should be mapped into memory when loading the exe-
cutable.

Chapter 2: Library reference 9

PT-DYNAMIC

PT-INTERP

This segment contains the name of a program that should be invoked
to interpret the binary. This is most commonly the system’s dynamic
linker/loader.

PT-NOTE

PT-PHDR

PT-LOPROC

Start of the processor-specific range.

PT-HIPROC

End of the processor-specific range.

[Procedure]elf-segment-flags segment
An integer representing a bitmask of flags for segment.

PF-X This segment should be mapped as executable.

PF-W This segment should be mapped as writable.

PF-R This segment should be mapped as readable.

PF-MASKOS

The bitmask for environment-specific flags.

PF-MASKPROC

The bitmask for processor-specific flags.

[Procedure]elf-segment-offset segment
The port position for the start of segment.

[Procedure]elf-segment-vaddr segment
The virtual address at which segment will be mapped.

[Procedure]elf-segment-paddr segment
The physical address at which segment will be mapped, if it is relevant to the operating
system loading the executable. Normally this is just the same as the virtual address.

[Procedure]elf-segment-filesz segment
The size of segment in the file.

[Procedure]elf-segment-memsz segment
The size of segment in the program memory. This can be larger than filesz when the
program uses uninitialized data (bss).

[Procedure]elf-segment-align segment
The alignment requirements of segment.

[Procedure]make-elf-symbol name binding type other shndx value size
Contructs a new elf-symbol object. This procedure is normally not useful when
reading ELF images. No checks are performed on the arguments.

Chapter 2: Library reference 10

[Procedure]elf-symbol? obj
Returns #t if obj is an ELF symbol object.

[Procedure]elf-symbol-name symbol
The name of symbol. This is given as an index into a string table. The string table is
located in one of the sections of the image. Use elf-section-link on the elf-section
object for the symbol table for find it. Normally you will not need to read the name
yourself, if you use elf-image-symbols to read the symbol table.

[Procedure]elf-symbol-other symbol
This field is reserved and should be zero.

[Procedure]elf-symbol-shndx symbol
The index of the section that is associated with symbol. This can also be one of the
special section index constants, SHN-*.

SHN-ABS The symbol references an absolute address.

SHN-COMMON

The symbol references an address in the uninitialized data segment (bss).

[Procedure]elf-symbol-value symbol
A value or address associated with symbol. For a symbol that refers to a function,
this is the address of the function.

[Procedure]elf-symbol-size symbol
The size of the data symbol refers to.

[Procedure]elf-symbol-binding symbol
An integer representing the symbol binding semantics of symbol.

STB-LOCAL

The symbol is local to the object file it is located in.

STB-GLOBAL

The symbol can be seen by all object files.

STB-WEAK The symbol can be seen by all object files, but may be overridden.

STB-LOOS Start of the environment-specific range.

STB-HIOS End of the environment-specific range.

STB-LOPROC

Start of the processor-specific range.

STB-HIPROC

End of the processor-specific range.

[Procedure]elf-symbol-type symbol
An integer representing the type of object symbol refers to.

STT-NOTYPE

No particular type.

Chapter 2: Library reference 11

STT-OBJECT

A variable, array or some other data object.

STT-FUNC A function or some other executable code.

STT-SECTION

A section (like the .text section).

STT-FILE A source code file name associated with the image.

STT-LOOS Start of the environment-specific range.

STT-HIOS End of the environment-specific range.

STT-LOPROC

Start of the processor-specific range.

STT-HIPROC

End of the processor-specific range.

[Procedure]elf-symbol-info symbol
This is a combination of the binding and type fields of symbol. It is used in the binary
encoding of symbols, but is otherwise not interesting on its own.

These are helpers for parsing ELF binaries:

[Procedure]elf-image-section-by-name image name
Searches image for the section header named name. Returns the matching elf-section
object, or #f if there is no such section.

(import (weinholt binfmt elf))

(let ((elf (open-elf-image "/bin/ls")))

(elf-image-section-by-name elf ".text"))

⇒ #[elf-section 132 1 6 4203856 9552 65240 0 0 16 0]

[Procedure]elf-image-sections image
Returns all the section headers of image as an alist mapping names to elf-section
objects.

(let ((elf (open-elf-image "/bin/ls")))

(map car (elf-image-sections elf)))

⇒
("" ".interp" ".note.ABI-tag" ".note.gnu.build-id" ".hash"

".gnu.hash" ".dynsym" ".dynstr" ".gnu.version"

".gnu.version_r" ".rela.dyn" ".rela.plt" ".init" ".plt"

".text" ".fini" ".rodata" ".eh_frame_hdr" ".eh_frame"

".ctors" ".dtors" ".jcr" ".dynamic" ".got" ".got.plt"

".data" ".bss" ".shstrtab")

[Procedure]elf-image-symbols image
Locates and parses the symbol table of image. The symbol table contains information
about the locations of functions, data structures and other things. The return value
is a vector of all the symbols, represented as pairs where the car is the name of the
symbol and the cdr is an elf-symbol object.

Chapter 2: Library reference 12

Returns #f if image has no symbol table. Most executables are “stripped” of their
symbol table to save space and to make debugging more difficult.

(let ((elf (open-elf-image "/usr/lib/debug/lib/libc-2.11.2.so")))

(assoc "memcpy" (vector->list (elf-image-symbols elf))))

⇒ ("memcpy" . #[elf-symbol 78278 18 0 12 522064 1125])

Version history:

• (1 0) – Initial release.

2.2 Data decompression

The libraries in this section deal with data decompression. They’re currently all based
around the INFLATE algorithm that decompresses data created by gzip, zip and zlib.

2.2.1 Mark Adler’s Adler-32 checksum

The (weinholt compression adler-32) library provides the Adler-32 checksum used in
the ZLIB data format. See Section 2.2.7 [compression zlib], page 19.

The procedures defined are similar to those made by define-crc in Section 2.3.4 [crypto
crc], page 23. The exported bindings are adler-32, adler-32-init, etc.

Version history:

• (0 0) – Initial version

2.2.2 GZIP custom input port

The (weinholt compression gzip) library provides a custom input port for reading GZIP
compressed data.

A word of warning: the current implementation uses an internal buffer that can grow
big when reading specially crafted data.

The GZIP format can support multiple compression methods, but only DEFLATE’d
data is supported in this library.

[Procedure]is-gzip-file? filename-or-port
Takes a filename or a binary input port and returns true if the file looks like a GZIP
file. The port should have set-port-position! and port-position.

[Procedure]make-gzip-input-port binary-input-port id close-underlying-port?
Returns a new port that can be used to read decompressed GZIP data from the
binary-input-port. The id is the name of the returned port.

If close-underlying-port? is true then at the end of the GZIP stream the binary-
input-port will be closed.

[Procedure]open-gzip-file-input-port filename
Opens the file specified by filename and returns a binary input port that decompresses
the file on-the-fly.

[Procedure]extract-gzip binary-input-port binary-output-port
Reads compressed data from binary-input-port and writes the decompressed data to
binary-output-port. Returns a list of gzip headers, one for each gzip member of the
file (gzip files can be concatenated).

Chapter 2: Library reference 13

[Procedure]get-gzip-header binary-input-port
Reads a GZIP header from binary-input-port and performs sanity checks.

See RFC 1952 for a full description of the following values. Updates are available at
http://www.gzip.org/format.txt.

[Procedure]gzip-text? hdr
True if the uncompressed data associated with hdr is believed to be text.

[Procedure]gzip-mtime hdr
The file’s modification time as an SRFI-19 date or #f is none is available.

[Procedure]gzip-extra-data hdr
An “extra field” which some systems use to encode additional file attributes. This is
an unparsed bytevector.

[Procedure]gzip-filename hdr
The file’s original filename as a string or #f if none is available.

[Procedure]gzip-comment hdr
A file comment as a string or #f if none is available.

[Procedure]gzip-method hdr
The symbol slowest, fastest or an integer (probably denoting a different compres-
sion setting).

[Procedure]gzip-os hdr
The id number of the operating system that created the file. It is e.g. 0 for DOS, 1
for Amiga, 2 for VMS, 3 for Unix.

Version history:

• (0 0) – Initial version.

• (1 0) – GZIP headers are returned as a record type. extract-gzip returns a list of
headers.

2.2.3 Decompress DEFLATE’d data

The procedures in (weinholt compression inflate) decompress DEFLATE data streams.
DEFLATE is the data format used by gzip, zip and zlib. This library handles the raw data
stream.

[Procedure]inflate binary-input-port binary-output-port crc-init crc-update
crc-finish

Inflates a complete DEFLATE data stream. It reads compressed data from binary-
input-port and writes decompressed data to binary-output-port.

The arguments crc-init, crc-update and crc-finish should have the same semantics that
(weinholt crypto crc) uses, see Section 2.3.4 [crypto crc], page 23 and Section 2.2.1
[compression adler-32], page 12.

Three values are returned: the final CRC of the decompressed data, its length, and a
bytevector with read but unused bytes from the input.

http://www.gzip.org/format.txt

Chapter 2: Library reference 14

[Procedure]make-inflater binary-input-port sink window-size dictionary
Returns a procedure that, when called, decompresses a DEFLATE block from binary-
input-port. The returned procedure should be called with zero arguments and returns
either the symbol done, to signify the end of the DEFLATE stream, or more to indicate
more blocks are (or will be) available.

For a description of the sink argument, see Section 2.2.4 [compression sliding-buffer],
page 14.

The window-size is the size of the sliding window buffer. The most common value is
32 ∗ 1024 bytes, but each DEFLATE stream has a correct value that was used when
creating the stream. For zlib streams this value is specified in the header.

The dictionary is a bytevector that is prepended to the output buffer, but it is not
actually copied to the output. See Section 2.2.7 [compression zlib], page 19.

The inflate algorithm needs some lookahead and therefore it can read a byte or two
that does not belong to the inflate stream itself. Apply the symbol get-buffer to
the returned procedure to recover those extra bytes as a bytevector.

Version history:

• (0 0) – Initial version

• (1 0) – inflate returns three values (backwards incompatible change). The inflater
procedures gain a way to return any buffered bytes.

2.2.4 A circular buffer attached to a data sink

The (weinholt compression sliding-buffer) library provides a circular buffer that
passes the buffered data to a sink (a sliding window).

A sink is a procedure with three arguments: a bytevector bv, an integer start and an
integer count. When the sink procedure is called it should process count bytes starting at
offset start of bv.

This library was written by Andreas Rottmann (and has been modified, see the source
code for a history). It is used by the (weinholt compression inflate) library because
the LZ77 component in INFLATE needs a way to copy data that has already been written
to the output, and this data structure obviates the need to use a file for that purpose.

[Procedure]make-sliding-buffer sink size
Returns a new sliding buffer with the given sink and size. The size determines how
far back in the output stream sliding-buffer-dup! can look.

[Procedure]sliding-buffer? obj
True if obj is a sliding buffer.

[Procedure]sliding-buffer-init! buffer bv
Copy initial data into the buffer so that it can be used with sliding-buffer-dup!.
The sink does not receive this data.

[Procedure]sliding-buffer-drain! buffer
Sends the buffered data to to the buffer’s sink.

[Procedure]sliding-buffer-read! buffer binary-input-port len
Reads len bytes from binary-input-port into the buffer.

Chapter 2: Library reference 15

[Procedure]sliding-buffer-put-u8! buffer u8
Copies the byte u8 into the buffer.

[Procedure]sliding-buffer-dup! buffer distance len
Duplicates len bytes from inside the output stream of buffer at distance bytes from
the current end of the buffer.

2.2.5 XZ custom input port

The (weinholt compression xz) library provides a custom input port for reading XZ
compressed data. XZ is a wrapper format around the LZMA2 algorithm and it is becoming
popular as a gzip/bzip2 replacement.

Note: An XZ file can specify several types of filters, other than LZMA2, but these have
currently not been implemented.

The LZMA2 algorithm uses a sliding buffer that may be up to 4 gigabytes. This might
cause problems when reading XZ files.

[Procedure]is-xz-file? filename-or-port
Takes a filename or a binary input port and returns true if the file looks like a XZ
file. The port should have set-port-position! and port-position.

[Procedure]make-xz-input-port binary-input-port id close-underlying-port?
Returns a new port that can be used to read decompressed XZ data from the binary-
input-port. The id is the name of the returned port.

To verify that the file was decompressed correctly it is necessary to close the port. On
close the port will read all remaining data and compare its checksum to the checksum
at the end of the file.

If close-underlying-port? is true then when the XZ input port is closed the binary-
input-port will also be closed.

[Procedure]open-xz-file-input-port filename
Opens the file specified by filename and returns a binary input port that decompresses
the file on-the-fly.

Version history:

• (1 0) – Initial version.

2.2.6 ZIP archive reader/writer

The (weinholt compression zip) library provides procedures for reading and writing ZIP
archives.

This library exports bindings that aren’t easily identified as having to do with ZIP
archives, so I suggest you use a prefix as described in Section 1.3 [Conflicting names],
page 2.

The (weinholt compression zip extra) library is used to set and retrieve file at-
tributes, look for absolute/relative path attacks, create directories, and handle system-
specific file types. None of this can really be done portably, so the default version of that
library does the minimum possible. A few implementation-dependent overrides are included
which allow directories to be created and handle some attributes.

Chapter 2: Library reference 16

To learn about the file format, see http://www.info-zip.org/doc/. In brief: each file
has a file record (followed by the file data), and the archive ends with a list of central direc-
tory records and a special end of central directory record. Some information is duplicated
in the file and central directory records.

[Procedure]get-central-directory binary-input-port
Returns the central directory of the ZIP archive in binary-input-port. This is a list
of central directory records and the end of central directory record.

[Procedure]central-directory->file-record zip-port cdir
Uses the data in the central directory record cdir to read the associated file record
from zip-input-port. The returned value is also referred to as a local file header.

[Procedure]extract-file zip-port local central
Extracts the file associated with the local and central records. The zip-port is the
same port the records were read from.

The extracted file will be created relative to the current working directory (or default
filespec) and will retain as many attributes as possible from those recorded in the ZIP
archive.

[Procedure]extract-to-port zip-port local central dest-port
Extracts the file associated with the local and central records to the given binary
output port dest-port. The zip-port is the same port the records were read from.

It is possible to preserve the file’s attributes (at least if the extracted file is a regular
byte stream) by using the accessors for local and central similarly to how the “extra”
library uses that data.

Creating a ZIP archive is done by appending each file, and then when done appending
the central directory. The central directory is in this case a list of central directory records
returned by e.g. append-file. The port the ZIP archive is written to must support port-
position and set-port-position!.

Note: Currently there is no compression performed when creating archives.

[Procedure]append-file zip-port filename
Appends the file given by filename to zip-port, which is a binary output port. Returns
a central directory record.

[Procedure]append-port zip-port data-port filename date local-extra central-extra
os-made-by internal-attributes external-attributes

Similar to append-file, except no file is used. Instead the data for the file is read
from the binary input port data-port. Because there is no file, all the file attributes
need to be provided explicitly. A central directory record is returned.

For a description of the attributes, see the accessors for file and central directory
records.

[Procedure]append-central-directory zip-port centrals
Writes a list of central directory records to the zip-port and then appends the special
end of central directory record. After this no more data should be written to the ZIP
archive. The list of central directory records centrals should be those returned by
append-file and append-port.

http://www.info-zip.org/doc/

Chapter 2: Library reference 17

[Procedure]create-file zip-port filenames
Builds a complete ZIP archive that includes all the files specified by the list filenames
and writes it to port, which should be a binary output port.

[Procedure]supported-compression-method? n
True if n represents a supported compression method. Currently only stored and
deflated are supported. See file-record-compression-method.

[Procedure]unsupported-error? obj
If an attempt was made to access an unsupported file record or to extract a file using
an unsupported compression method then a condition will be raised that satisfies this
predicate.

[Procedure]file-record? obj
True if obj is a file record.

[Procedure]file-record-minimum-version frec
This is the minimum supported version of the ZIP standard required to extract the
file. Currently vresion 2.0 is supported (which is encoded as the exact integer 20).

[Procedure]file-record-flags frec
Various flags that can indiciate which compression option was used, etc. You can
probably ignore these.

[Procedure]file-record-compression-method frec
Returns an integer that represents the compression method that was used when stor-
ing the file associated with frec. Most ZIP files use only Deflate and store.

• compression-stored means the file was stored without any compression.

• compression-shrunk is the obsolete Shrunk method.

• compression-reduced1 is the obsolete Reduced method with factor 1.

• compression-reduced2 same as above, factor 2.

• compression-reduced3 same as above, factor 3.

• compression-reduced4 same as above, factor 4.

• compression-imploded is the obsolete Implode method.

• compression-deflated is the Deflate compression algorithm.

• compression-deflate64 is a slightly modified Deflate.

• compression-pkimplode is something else.

• compression-bzip2 is BZIP2.

[Procedure]file-record-date frec
The file’s modification time as an SRFI-19 date.

[Procedure]file-record-crc-32 frec
The file’s CRC-32 checksum. See Section 2.3.4 [crypto crc], page 23.

[Procedure]file-record-compressed-size frec
The number of bytes the file uses inside the ZIP archive.

Chapter 2: Library reference 18

[Procedure]file-record-uncompressed-size frec
The number of bytes the file will use when it has been decompressed.

[Procedure]file-record-filename frec
The filename of the file. This might be different in the associated central directory
record (e.g. due to mischief). This can also be the string "-" if the file came from the
standard input port.

[Procedure]file-record-extra frec
An list of id and data pairs. This is used to encode file attributes, etc. See the file
format specification for more information.

[Procedure]central-directory? obj
True if obj is a central-directory record.

[Procedure]central-directory-version-made-by cdir
This is the version of the ZIP standard supported by the implementation that created
the archive.

[Procedure]central-directory-os-made-by cdir
The ID number of the operating system on which the ZIP archive was created. See
the file format specification for a full list (DOS is 0, Unix is 3).

[Procedure]central-directory-minimum-version cdir
This is the minimum supported version of the ZIP standard required to extract the
file. Currently version 2.0 is supported (which is encoded as the exact integer 20).

[Procedure]central-directory-flags cdir
See file-record-flags.

[Procedure]central-directory-compression-method cdir
See file-record-compression-method.

[Procedure]central-directory-date cdir
The file’s modification time as an SRFI-19 date.

[Procedure]central-directory-crc-32 cdir
The file’s CRC-32 checksum. See Section 2.3.4 [crypto crc], page 23.

[Procedure]central-directory-compressed-size cdir
The number of bytes the file uses inside the ZIP archive.

[Procedure]central-directory-uncompressed-size cdir
The number of bytes the file will use when it has been decompressed.

[Procedure]central-directory-disk-number-start cdir
The number of the split archive that the file starts on. Note that there is no explicit
support for split archives, so this is untested.

[Procedure]central-directory-internal-attributes cdir
Bit 0 of this integer is set if the file is believed to be text. This might be useful for
end of line conversion, but it is probably unreliable.

Chapter 2: Library reference 19

[Procedure]central-directory-external-attributes cdir
The file attributes of the file. The format depends on the os-made-by field.

[Procedure]central-directory-filename cdir
See file-record-filename.

[Procedure]central-directory-extra cdir
See file-record-extra. Note that some of the fields have the same ID here and in
the file records, but slightly different encodings.

[Procedure]central-directory-comment cdir
A textual comment associated with the file.

[Procedure]end-of-central-directory? obj
True of obj is an end-of-central-directory record.

[Procedure]end-of-central-directory-disk edir
The number of the split archive where edir is located.

[Procedure]end-of-central-directory-start-disk edir
The number of the split archive where the central directory begins.

[Procedure]end-of-central-directory-entries edir
The number of records in the central directory in this split archive.

[Procedure]end-of-central-directory-total-entries edir
The number of records in the central directory for the whole archive.

[Procedure]end-of-central-directory-comment edir
A textual comment associated with the whole archive.

Version history:

• (0 0) – Initial version

2.2.7 ZLIB custom input port

The (weinholt compression zlib) library provides a custom input port for reading ZLIB
compressed data.

[Procedure]make-zlib-input-port binary-input-port id max-buffer-size
close-underlying-port? dictionaries

Returns a binary input port that decompresses and reads a ZLIB stream from the
binary input port binary-input-port. The id is the name of the returned custom
binary input port.

If max-buffer-size is false then the internal buffer can grow without bounds (might
be a bad idea). Protocols using ZLIB will normally specify a "flush" behavior. If
your protocol uses flushing and specifies a maximum record size, then use that size
as max-buffer-size.

If close-underlying-port? is true then at the end of the zlib stream the binary-input-
port will be closed.

Chapter 2: Library reference 20

An application can define dictionaries which can improve compression by containing
byte sequences commonly found at the start of files. The dictionaries argument is an
alist that maps Adler-32 checksums to bytevectors. See Section 2.2.1 [compression
adler-32], page 12.

Version history:

• (0 0) – Initial version

2.3 Cryptographic primitives

Beware that if you’re using some of these libraries for sensitive data, let’s say passwords,
then there is probably no way to make sure a password is ever gone from memory. There is
no guarantee that the passwords will not be swapped out to disk or transmitted by radio.
There might be other problems as well. The algorithms themselves might be weak. Don’t
pick weak keys. Know what you’re doing.

Your Scheme’s implementation of (srfi :27 random-bits) might be too weak. It’s
common that it will be initialized from time alone, so an attacker can easily guess your
random-source internal state by trying a few timestamps and checking which one generates
the data you sent. These libraries try to use /dev/urandom if it exists, but if it doesn’t they
fall back on SRFI-27 and could reveal the secret of your heart to the enemy. See RFC4086
for details on how randomness works.

And remember what the license says about warranties. Don’t come crying to me if the
enemy deciphers your secret messages and your whole convoy blows up. These libraries have
not been validated by the NIST or the FDA and quite likely aren’t allowed for government
work.

2.3.1 Advanced Encryption Standard

The (weinholt crypto aes) library provides an implementation of the symmetrical Rijn-
dael cipher as parameterized by the Advanced Encryption Standard (AES). It was created
by the Belgian cryptographers Joan Daemen and Vincent Rijmen. Key lengths of 128, 192
and 256 bits are supported.

The code uses clever lookup tables and is probably as fast as any R6RS implementation
of AES can be without using an FFI. The number of modes provided is pretty sparse though
(only ECB and CTR). It also leaks key material via memory.

[Procedure]expand-aes-key key
Expands the key into an AES key schedule suitable for aes-encrypt!. The key
must be a bytevector of length 16, 24 or 32 bytes. The type of the return value is
unspecified.

[Procedure]aes-encrypt! source source-start target target-start key-schedule
Takes the 16 bytes at source+source-start, encrypts them in Electronic Code Book
(ECB) mode using the given key-schedule, and then writes the result at target+target-
start. The source and the target can be the same.

(import (weinholt crypto aes))

(let ((buf (string->utf8 "A Scheme at work"))

(sched (expand-aes-key (string->utf8 "super-secret-key"))))

Chapter 2: Library reference 21

(aes-encrypt! buf 0 buf 0 sched)

buf)

⇒ #vu8(116 7 242 187 114 235 130 138 166 39 24 204 117 224 5 8)

It is generally not a good idea to use ECB mode alone.

[Procedure]reverse-aes-schedule key-schedule
Reverses the key-schedule to make it suitable for aes-decrypt!.

[Procedure]aes-decrypt! source source-start target target-start key-schedule
Performs the inverse of aes-encrypt!. The key-schedule should first be reversed with
reverse-aes-schedule.

(import (weinholt crypto aes))

(let ((buf (bytevector-copy #vu8(116 7 242 187 114 235 130 138

166 39 24 204 117 224 5 8)))

(sched (reverse-aes-schedule

(expand-aes-key

(string->utf8 "super-secret-key")))))

(aes-decrypt! buf 0 buf 0 sched)

(utf8->string buf))

⇒ "A Scheme at work"

[Procedure]clear-aes-schedule! key-schedule
Clears the AES key schedule so that it no longer contains cryptographic material.
Please note that there is no guarantee that the key material will actually be gone
from memory. It might remain in temporary numbers or other values.

[Procedure]aes-ctr! source source-start target target-start len key-schedule ctr
Encrypts or decrypts the len bytes at source+source-start using Counter (CTR) mode
and writes the result to target+target-start. The len does not need to be a block
multiple. The ctr argument is a non-negative integer.

This procedure is its own inverse and the key-schedule should not be reversed for
decryption.

Never encrypt more than once using the same key-schedule and ctr value. If you’re
not sure why that is a bad idea, you should read up on CTR mode.

[Procedure]aes-cbc-encrypt! source source-start target target-start k key-schedule
iv

Encrypts k bytes in the bytevector source starting at source-start with AES in CBC
mode and writes the result to target at target-start.

The argument k must be an integer multiple of 16, which is the block length.

The iv bytevector is an Initial Vector. It should be 16 bytes long, initialized to random
bytes. This procedure updates the iv after processing a block.

[Procedure]aes-cbc-decrypt! source source-start target target-start k key-schedule
iv

The inverse of aes-cbc-encrypt!.

Version history:

• (1 0) – Initial version.

Chapter 2: Library reference 22

2.3.2 ARCFOUR stream cipher

The (weinholt crypto arcfour) library provides the well-known ARCFOUR stream ci-
pher. It is the fastest of the ciphers provided by this library collection.

Since this is a stream cipher there is no block length.

[Procedure]expand-arcfour-key key
Expands the bytevector key into an ARCFOUR keystream value. The return value
has an unspecified type and is suitable for use with the other procedures exported by
this library.

Never use the same key to encrypt two different plaintexts.

[Procedure]arcfour! source source-start target target-start k keystream
Reads k bytes from source starting at source-start, XORs them with bytes from the
keystream, and writes them to target starting at target-start. If source and target
are the same object then it is required that target-start be less then or equal to
source-start.

(import (weinholt crypto arcfour))

(let ((buf #vu8(90 60 247 233 181 200 38 52 121 82 133

98 244 159 12 97 90 157 43 183 249 170

73 244 126))

(keystream (expand-arcfour-key

(string->utf8 "hardly a secret"))))

(arcfour-discard! keystream 3000)

(arcfour! buf 0 buf 0 (bytevector-length buf) keystream)

(clear-arcfour-keystream! keystream)

(utf8->string buf))

⇒ "I AM POKEY THE PENGUIN!!!"

[Procedure]arcfour-discard! keystream n
Discards n bytes from the keystream keystream. It is recommended that the beginning
of the keystream is discarded. Some protocols, e.g. RFC 4345, require it.

[Procedure]clear-arcfour-keystream! keystream
Removes all key material from the keystream.

2.3.3 The Blowfish Cipher

The (weinholt crypto blowfish) library is a complete implementation of Bruce Schneier’s
Blowfish cipher. It is a symmetric block cipher with key length between 8 and 448 bits.
The key length does not affect the performance.

[Procedure]expand-blowfish-key key
Expands a Blowfish key, which is a bytevector of length between 1 and 56 bytes (the
longer the better). The returned key schedule can be used with blowfish-encrypt!

or reverse-blowfish-schedule.

[Procedure]blowfish-encrypt! source source-index target target-index schedule
Encrypts the eight bytes at source+source-start using Electronic Code Book (ECB)
mode. The result is written to target+target-start.

Chapter 2: Library reference 23

[Procedure]reverse-blowfish-schedule
Reverses a Blowfish key schedule so that it can be used with blowfish-decrypt!.

[Procedure]blowfish-decrypt! source source-index target target-index schedule
The inverse of blowfish-encrypt!.

[Procedure]clear-blowfish-schedule!
Clears the Blowfish key schedule so that it no longer contains cryptographic material.
Please note that there is no guarantee that the key material will actually be gone
from memory. It might remain in temporary numbers or other values.

[Procedure]blowfish-cbc-encrypt! source source-start target target-start k
schedule iv

Encrypts k bytes in the bytevector source starting at source-start with Blowfish in
CBC mode and writes the result to target at target-start.

The argument k must be an integer multiple of 8, which is the block length.

The iv bytevector is an Initial Vector. It should be 8 bytes long, initialized to random
bytes. This procedure updates the iv after processing a block.

[Procedure]blowfish-cbc-decrypt! source source-start target target-start k
schedule iv

The inverse of blowfish-cbc-encrypt!.

Version history:

• (0 0) – Initial version.

• (0 1) – Added procedures for CBC mode.

2.3.4 Cyclic Redundancy Codes

The (weinholt crypto crc) library exports syntax for defining procedures that calculate
CRCs. There is a simple syntax that simply requires the name of the CRC, and an advanced
syntax that can define new CRCs.

CRCs do not really qualify as cryptography, because it is trivial to modify data so that
the modified data’s CRC matches the old one.

[Syntax]define-crc name
This is the simple interface that requires merely the name of the CRC algorithm.
The pre-defined CRCs that can be used this way are currently: crc-32, crc-16,
crc-16/ccitt, crc-32c, crc-24, crc-64 (CRC-64-ISO), and crc-64/ecma-182.

(import (weinholt crypto crc))

(define-crc crc-32)

[Syntax]define-crc name width polynomial init ref-in ref-out xor-out check
For details on how the arguments work, and the theory behind them, see Ross
N. Williams’s paper A painless guide to CRC error detection algorithms, which is
available at http://www.ross.net/crc/crcpaper.html. A brief description of the
arguments follows.

http://www.ross.net/crc/crcpaper.html

Chapter 2: Library reference 24

The width is the bitwise length of the polynomial. You might be led to believe that it
should sometimes be 33, but if so you’ve been counting the highest bit, which doesn’t
count.

The polynomial for CRC-16 is sometimes given as x16 + x15 + x2 +1. This translates
to #b1000000000000101 (#x8005). Notice that x16 is absent. Don’t use the reversed
polynomial if you have one of those, instead set ref-in and ref-out properly.

After a CRC has been calculated it is sometimes xor’d with a final value, this is
xor-out.

check is either #f or the CRC of the string "123456789".

[Syntax]define-crc name (coefficients ...) init ref-in ref-out xor-out check
This is a slightly easier version of the advanced interface where you can simply specify
the powers of the coefficients. CRC-16 in this syntax becomes:

(import (weinholt crypto crc))

(define-crc crc-16 (16 15 2 0) #x0000 #t #t #x0000 #xBB3D)

7→
(begin

(define (crc-16 bv)

(crc-16-finish (crc-16-update (crc-16-init) bv)))

(define (crc-16-init) #x0000)

(define (crc-16-finish r) (bitwise-xor r #x0000))

(define (crc-16-self-test)

(if #xBB3D

(if (= (crc-16 (string->utf8 "123456789")) #xBB3D)

’success ’failure)

’no-self-test))

...)

Another example: the polynomial x8 + x2 + x+ 1 in this syntax is (8 2 1 0).

After e.g. (define-crc crc-32) has been used, these bindings will be available (with
names that match the name of the CRC):

[Procedure]crc-32 bytevector
Calculates the final CRC of the entire bytevector and returns it as an integer.

(import (weinholt crypto crc))

(define-crc crc-32)

(crc-32 (string->utf8 "A fiendish scheme"))

⇒ 1384349758

[Procedure]crc-32-init
Returns an initial CRC state.

[Procedure]crc-32-update state bv [start end]
Uses the state and returns a new state that includes the CRC of the given bytes.

(import (weinholt crypto crc))

(define-crc crc-32)

(crc-32-finish

Chapter 2: Library reference 25

(crc-32-update (crc-32-init)

(string->utf8 "A fiendish scheme")))

⇒ 1384349758

[Procedure]crc-32-finish state
Finalizes the CRC state.

[Procedure]crc-32-width
Returns the bit-width of the CRC, e.g. 32 for CRC-32.

[Procedure]crc-32-self-test
Performs a sanity check and returns either success, failure or no-self-test.

Version history:

• (1 0) – Initial version. Includes crc-32, crc-16, crc-16/ccitt, crc-32c, and crc-24.

• (1 1) – Added crc-64 and the -width procedures. The -update procedures use fixnums
if (fixnum-width) is larger than the CRC’s width. (1 2) – Added crc-64/ecma-182.

2.3.5 Data Encryption Standard

The Data Encryption Standard (DES) is older than AES and uses shorter keys. To get
longer keys the Triple Data Encryption Algorithm (TDEA, 3DES) is commonly used instead
of DES alone.

The (weinholt crypto des) library is incredibly inefficient and the API is, for no good
reason, different from the AES library. You should probably use AES instead, if possible.

[Procedure]des-key-bad-parity? key
Returns #f if the DES key has good parity, or the index of the first bad byte. Each
byte of the key has one parity bit, so even though it is a bytevector of length eight (64
bits), only 56 bits are used for encryption and decryption. Parity is usually ignored.

[Procedure]des! bv key-schedule [offset E]
The fundamental DES procedure, which performs both encryption and decryption
in Electronic Code Book (ECB) mode. The eight bytes starting at offset in the
bytevector bv are modified in-place.

The offset can be omitted, in which case 0 is used.

The E argument will normally be omitted. It is only used by the des-crypt proce-
dure.

(import (weinholt crypto des))

(let ((buf (string->utf8 "security"))

(sched (permute-key (string->utf8 "terrible"))))

(des! buf sched)

buf)

⇒ #vu8(106 72 113 111 248 178 225 208)

(import (weinholt crypto des))

(let ((buf (bytevector-copy #vu8(106 72 113 111 248 178 225 208)))

(sched (reverse (permute-key (string->utf8 "terrible")))))

(des! buf sched)

(utf8->string buf))

⇒ "security"

Chapter 2: Library reference 26

[Procedure]permute-key key
Permutes the DES key into a key schedule. The key schedule is then used as an
argument to des!. To decrypt, simply reverse the key schedule. The return value is
a list.

[Procedure]tdea-permute-key key1 [key2 key3]
Permutes a 3DES key into a key schedule. If only one argument is given then it must
be a bytevector of length 24. If three arguments are given they must all be bytevectors
of length eight.

The return value’s type is unspecified.

[Procedure]tdea-encipher! bv offset key
Encrypts the eight bytes at offset of bv using the given 3DES key schedule.

[Procedure]tdea-decipher! bv offset key
The inverse of tdea-encipher!.

[Procedure]tdea-cbc-encipher! bv key iv offset count
Encrypts the count bytes at offset of bv using Cipher Block Chaining (CBC) mode.

The iv argument is the Initial Vector, which is XOR’d with the data before encryption.
It is a bytevector of length eight and it is modified for each block.

Both offset and count must be a multiples of eight.

[Procedure]tdea-cbc-decipher! bv key iv offset count
The inverse of tdea-cbc-encipher!.

[Procedure]des-crypt password salt
This is a password hashing algorithm that used to be very popular on Unix systems,
but is today too fast (which means brute forcing passwords from hashes is fast). The
password string is at most eight characters.

The algorithm is based on 25 rounds of a slightly modified DES.

The salt must be a string of two characters from the alphabet #\A–#\Z, #\a–#\z,
#\0–#\9, #\. and #\/.

(import (weinholt crypto des))

(des-crypt "password" "4t")

⇒ "4tQSEW3lEnOio"

A more general interface is also available, see Section 2.3.13 [crypto password],
page 36.

Version history:

• (1 0) – Initial version.

2.3.6 Diffie-Hellman key exchange

The (weinholt crypto dh) library exports procedures and constants for Diffie-Hellman
(Merkle) key exchange. D-H works by generating a pair of numbers, sending one of them
to the other party, and using the other one and the one you receive to compute a shared
secret. The idea is that it’s difficult for an eavesdropper to deduce the shared secret.

The D-H exchange must be protected by e.g. public key encryption because otherwise a
MITM attack is trivial. It is best to use a security protocol designed by an expert.

Chapter 2: Library reference 27

[Procedure]make-dh-secret generator prime bit-length
Generates a Diffie-Hellman secret key pair. Returns two values: the secret key (of
bitwise length bit-length) part and the public key part.

[Procedure]expt-mod base exponent modulus
Computes (mod (expt base exponent) modulus). This is modular exponentiation,
so all the parameters must be integers.

The exponent can also be negative (set it to -1 to calculate the multiplicative inverse
of base).

(import (weinholt crypto dh))

(let ((g modp-group15-g) (p modp-group15-p))

(let-values (((y Y) (make-dh-secret g p 320))

((x X) (make-dh-secret g p 320)))

;; The numbers being compared are the shared secret

(= (expt-mod X y modp-group15-p)

(expt-mod Y x modp-group15-p))))

⇒ #t

This library also exports a few well known modular exponential (MODP) Diffie-Hellman
groups (generators and primes) that have been defined by Internet RFCs. They are named
modp-groupN-g (generator) and modp-groupN-p (prime) where N is the number of the
group. Groups 1, 2, 5, 14, 15, 16, 17 and 18 are currently exported. They all have different
lengths and longer primes are more secure but also slower. See RFC 3526 for more on this.

Version history:

• (1 0) – Initial version.

2.3.7 Digital Signature Algorithm

The (weinholt crypto dsa) library provides procedures for creating and verifying DSA
signatures. DSA is a public key signature algorithm, which means that it uses private and
public key pairs. With a private key you can create a signature that can then be verified by
someone using the corresponding public key. The idea is that it’s very difficult to create a
correct signature without having access to the private key, so if the signature can be verified
it must have been made by someone who has access to the private key.

DSA is standardized by FIPS Publication 186. It is available at this web site:
http://csrc.nist.gov/publications/PubsFIPS.html.

There is currently no procedure to generate a new DSA key. Here is how to generate
keys with OpenSSL or GnuTLS:

openssl dsaparam 1024 | openssl gendsa /dev/stdin > dsa.pem

certtool --dsa --bits 1024 -p > dsa.pem

The key can then be loaded with dsa-private-key-from-pem-file.

[Procedure]make-dsa-public-key p q g y
Returns a DSA public key value. See the FIPS standard for a description of the
parameters.

To access the fields use dsa-public-key-p, dsa-public-key-q, dsa-public-key-g
and dsa-public-key-y.

http://csrc.nist.gov/publications/PubsFIPS.html

Chapter 2: Library reference 28

[Procedure]dsa-public-key? obj
True if obj is a DSA public key value.

[Procedure]dsa-public-key-length key
Returns the number of bits in the p value of key. This is often considered to be the
length of the key. The bitwise-length of q is also important, it corresponds with the
length of the hashes used for signatures.

[Procedure]make-dsa-private-key p q g y x
Returns a DSA private key value. See the FIPS standard for a description of the
parameters.

To access the fields use dsa-private-key-p, dsa-private-key-q, dsa-private-

key-g, dsa-private-key-y and dsa-private-key-x.

[Procedure]dsa-private-key? obj
Returns #t if obj is a DSA private key.

[Procedure]dsa-private->public private-key
Converts a private DSA key into a public DSA key by removing the private fields.

[Procedure]dsa-private-key-from-bytevector bv
Parses bv as an ASN.1 DER encoded private DSA key.

[Procedure]dsa-private-key-from-pem-file filename
Opens the file and reads a private DSA key. The file should be in Privacy Enhanced
Mail (PEM) format and contain an ASN.1 DER encoded private DSA key.

Encrypted keys are currently not supported.

[Procedure]dsa-signature-from-bytevector bv
Parses the bytevector bv as an ASN.1 DER encoded DSA signature. The return value
is a list with the r and s values that make up a DSA signature.

[Procedure]dsa-create-signature hash private-key
The hash is the message digest (as a bytevector) of the data you want to sign. The
hash and the private-key are used to create a signature which is returned as two
values: r and s.

The hash can e.g. be an SHA-1 message digest. Such a digest is 160 bits and the q
parameter should then be 160 bits.

[Procedure]dsa-verify-signature hash public-key r s
The hash is the message digest (as a bytevector) of the data which the signature is
signing.

Returns #t if the signature matches, otherwise #f.

Version history:

• (1 0) – Initial version.

Chapter 2: Library reference 29

2.3.8 Elliptic Curve Cryptography

The (weinholt crypto ec) provides algorithms and definitions for working with elliptic
curves.

Only curves over prime finite fields are currently supported. Points are either +inf.0

(the point at infinity) or a pair of x and y coordinates.

Some standardized curves are exported:

secp256r1

This curve is equivalent to a 3072-bit RSA modulus.

nistp256 Curve P-256. This is the same curve as above.

secp384r1

This curve is equivalent to a 7680-bit RSA modulus.

nistp384 Curve P-384. This is the same curve as above.

secp521r1

This curve is equivalent to a 15360-bit RSA modulus. The “521” is not a typo.

nistp521 Curve P-521. This is the same curve as above.

[Procedure]make-elliptic-prime-curve p a b G n h
Constructs a new elliptic-curve object given the domain parameters of a curve:

y2 ≡ x3 + ax+ b (mod p).

Normally one will be working with pre-defined curves, so this constructor can be
safely ignored. The curve definition will include all these parameters.

[Procedure]elliptic-prime-curve? obj
Returns #t if obj is an elliptic prime curve.

The accessors can be safely ignored unless you’re interested in the curves themselves.

[Procedure]elliptic-curve-a elliptic-curve
This is one of the parameters that defines the curve: an element in the field.

[Procedure]elliptic-curve-b elliptic-curve
This is one of the parameters that defines the curve: another element in the field.

[Procedure]elliptic-curve-G elliptic-curve
This is one of the parameters that defines the curve: the base point, i.e. an actual
point on the curve.

[Procedure]elliptic-curve-n elliptic-curve
This is one of the parameters that defines the curve: a prime that is the order of G
(the base point).

[Procedure]elliptic-curve-h elliptic-curve
This is one of the parameters that defines the curve: the cofactor.

[Procedure]elliptic-prime-curve-p elliptic-prime-curve
This is one of the parameters that defines the curve: the integer that defines the
prime finite field.

Chapter 2: Library reference 30

[Procedure]elliptic-curve=? elliptic-curve1 elliptic-curve2
Returns #t if the elliptic curve objects are equal (in the sense that all domain param-
eters are equal).

[Procedure]ec+ P Q elliptic-curve
This adds the points P and Q, which must be points on elliptic-curve.

[Procedure]ec- P [Q] elliptic-curve
This subtracts Q from P, both of which must be points on elliptic-curve. If Q is
omitted it returns the complement of P.

[Procedure]ec* multiplier P elliptic-curve
This multiplies P by multiplier. P must be a point on elliptic-curve and multiplier
must be a non-negative integer.

This operation is the elliptic curve equivalence of expt-mod.

[Procedure]bytevector->elliptic-point bytevector elliptic-curve
Converts bytevector to a point on elliptic-curve. When points are sent over the
network or stored in files they are first converted to bytevectors.

[Procedure]integer->elliptic-point integer elliptic-curve
Performs the same conversion as bytevector->elliptic-point, but first converts
integer to a bytevector.

[Procedure]->elliptic-point x elliptic-curve
A generic procedure that accepts as input an x that is either already a point, a
bytevector representing a point, or an integer representing a point.

[Procedure]elliptic-point->bytevector point elliptic-curve
Converts point to its bytevector representation. This representation is sometimes
hashed, e.g. in SSH public keys, so the canonical representation is used for compati-
bility with other software.

Version history:

• (1 0) – Initial version.

2.3.9 Elliptic Curve Digital Signature Algorithm (ECDSA)

The (weinholt crypto ec dsa) library builds on the (weinholt crypto ec) library and
provides an interface similar to (weinholt crypto dsa). The keys and the operations are
defined to work with elliptic curves instead of modular exponentiation.

[Procedure]make-ecdsa-public-key elliptic-curve Q
Constructs an ECDSA public key object. Q is a point on elliptic-curve. Q is only
checked to be on the curve if it is in bytevector format.

[Procedure]ecdsa-public-key? obj
Returns #t if obj is an ECDSA public key object.

[Procedure]ecdsa-public-key-curve ecdsa-public-key
Returns the curve that ecdsa-public-key uses.

Chapter 2: Library reference 31

[Procedure]ecdsa-public-key-Q ecdsa-public-key
The point on the curve that defines ecdsa-public-key.

[Procedure]ecdsa-public-key-length ecdsa-public-key
The bitwise length of the ECDSA public key ecdsa-public-key.

[Procedure]make-ecdsa-private-key elliptic-curve [d Q]
Constructs an ECDSA private key object. d is a secret multiplier, which gives a
public point Q on elliptic-curve.

If Q is omitted it is recomputed based on d and the curve. If d is omitted a random
multiplier is chosen. Please note the warning about entropy at the start of this section.
See Section 2.3 [crypto], page 20.

[Procedure]ecdsa-private-key? obj
Returns #t if obj is an ECDSA private key object.

[Procedure]ecdsa-private-key-d ecdsa-private-key
The secret multiplier of ecdsa-private-key.

[Procedure]ecdsa-private-key-Q ecdsa-private-key
The public point of ecdsa-private-key.

[Procedure]ecdsa-private->public ecdsa-private-key
Strips ecdsa-private-key of the secret multiplier and returns an ECDSA public key
object.

[Procedure]ecdsa-private-key-from-bytevector bytevector
Parses bytevector as an ECDSA private key encoded in RFC 5915 format. A curve
identifier is encoded along with the key. Currently only the curves secp256r1,
secp384r1 and secp521r1 are supported.

[Procedure]ecdsa-verify-signature hash ecdsa-public-key r s
Returns #t if the signature (r,s) was made by the private key corresponding to ecdsa-
public-key. The bytevector hash is the message digest that was signed.

[Procedure]ecdsa-create-signature hash ecdsa-private-key
Creates a signature of the bytevector hash using ecdsa-private-key. Returns the values
r and s.

ECDSA keys are normally defined to work together with some particular message digest
algorithm. RFC 5656 defines ECDSA with SHA-2 and this library provides the record
types ecdsa-sha-2-public-key and ecdsa-sha-2-private-key so that keys defined to
work with SHA-2 can be distinguished from other keys. Keys of this type are still usable
for operations that expect the normal ECDSA key types.

[Procedure]make-ecdsa-sha-2-public-key elliptic-curve Q
Performs the same function as make-ecdsa-public-key, but the returned key is
marked to be used with SHA-2.

[Procedure]ecdsa-sha-2-public-key? obj
Returns #t if obj is an ECDSA public key marked to be used with SHA-2.

Chapter 2: Library reference 32

[Procedure]make-ecdsa-sha-2-private-key
Performs the same function as make-ecdsa-private-key, but the returned key is
marked to be used with SHA-2.

[Procedure]ecdsa-sha-2-private-key?
Returns #t if obj is an ECDSA private key marked to be used with SHA-2.

[Procedure]ecdsa-sha-2-verify-signature message ecdsa-sha2-public-key r s
The bytevector message is hashed with the appropriate message digest algorithm (see
RFC 5656) and the signature (r,s) is then verified. Returns #t if the signature was
made with the private key corresponding to ecdsa-sha2-public-key.

[Procedure]ecdsa-sha-2-create-signature message ecdsa-sha2-private-key
The bytevector message is hashed with the appropriate message digest algorithm
(see RFC 5656) and a signature is created using ecdsa-sha2-private-key. Returns the
values r and s.

[Procedure]ecdsa-sha-2-private-key-from-bytevector bytevector
Performs the same function as ecdsa-private-key-from-bytevector, except the
returned value is marked to be used with SHA-2.

Version history:

• (1 0) – Initial version.

2.3.10 Entropy and randomness

The (weinholt crypto entropy) library is meant to help with generating random data. It
tries to use the system’s /dev/urandom device if possible, otherwise it uses SRFI-27.

Please see the note at the beginning of the chapter.

[Procedure]bytevector-randomize! target [target-start k]
Writes k random bytes to the bytevector target starting at index target-start.

[Procedure]make-random-bytevector k
Returns a bytevector of length k with random content.

(import (weinholt crypto entropy))

(make-random-bytevector 8)

⇒ #vu8(68 229 38 253 58 70 198 161)

Version history:

• (1 0) – Initial version.

2.3.11 Message-Digest algorithm 5

The (weinholt crypto md5) library is an implementation of the cryptographic hash func-
tion MD5. It takes bytes as input and returns a message digest, which is like a one-way
summary of the data. The idea is that even the smallest change in the data should produce
a completely different digest, and it should be difficult to find different data that has the
same digest. An MD5 digest is 16 bytes.

MD5 has a maximum message size of 264 − 1 bits.

The MD5 algorithm is considered broken and you will likely want to use SHA-2 instead,
if possible.

Chapter 2: Library reference 33

[Procedure]md5 bv ...
The complete all-in-one procedure to calculate the MD5 message digest of all the
given bytevectors in order. Returns an md5 state, which should be used with md5-

>bytevector or md5->string.

(md5->string (md5 (string->utf8 "A Scheme in my pocket")))

⇒ "65A2B2D8EE076250EA0A105A8D5EF1BB"

[Procedure]md5-length
The length of md5 message digests in bytes.

[Procedure]make-md5
Returns a new MD5 state for use with the procedures below. The type of the return
value is unspecified.

[Procedure]md5-update! md5state bv [start end]
Updates the md5state to include the specified range of data from bv.

[Procedure]md5-finish! md5state
Finalizes the md5state. This must be used after the last call to md5-update!.

[Procedure]md5-clear! md5state
Clear the md5state so that it does not contain any part of the input data or the
message digest.

[Procedure]md5-copy md5state
Make a copy of the md5state.

[Procedure]md5-finish md5state
Performs md5-finish! on a copy of md5state and then returns the new state.

[Procedure]md5-copy-hash! md5state bv offset
Copies the message digest (a.k.a. hash) in the finalized md5state into bv at the given
offset.

[Procedure]md5-96-copy-hash! md5state bv offset
Like md5-copy-hash!, but only copies the leftmost 96 bits.

[Procedure]md5->bytevector md5state
Returns a new bytevector which contains a binary representation of the finalized
md5state.

[Procedure]md5->string md5state
Returns a new string which contains a textual representation of the finalizedmd5state.
The conventional hexadecimal representation is used.

[Procedure]md5-hash=? md5state bv
Compares the finalized md5state with the leading bytes of bv. The comparison is
designed to take the same amount of time regardless of where any differences may be.
This may be important for networked programs that would otherwise be vulnerable
to timing attacks.

Chapter 2: Library reference 34

[Procedure]md5-96-hash=? md5state bv
Like md5-hash=? except it only compares the leftmost 96 bits.

[Procedure]hmac-md5 secret bytevector ...
An HMAC is a Hash-based Message Authentication Code. This procedure uses MD5
to generate such a code. The return value is an MD5 state.

Version history:

• (1 0) – Initial version.

• (1 1) – Added md5-length, md5-96-copy-hash!, md5-hash=? and md5-96-hash=?.

2.3.12 OpenPGP signature verification

The (weinholt crypto openpgp) library provides procedures for reading OpenPGP
keyrings and verifying signatures. OpenPGP signatures can be created with e.g. GNU
Private Guard (GnuPG) and are often used to verify the integrity of software releases.

Version 4 keys and version 3/4 signatures are supported. The implemented public key
algorithms are RSA and DSA, and it verifies signatures made using the message digest
algorithms MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 (all the standard
algorithms except RIPE-MD160).

An OpenPGP key is actually a list of OpenPGP packets with a certain structure: first
is the primary key (e.g. an RSA or DSA key), next possibly a revocation, then a number of
user IDs, attributes, signatures and also subkeys (which are just like primary keys, except
marked as subkeys). See RFC 4880 section 11 for the exact composition. This library
represents keyrings as hashtables indexed by key ID and where the entries are lists of
packets in the order they appeared in the keyring file.

Please note that this library assumes the program that wrote the keyring did due dili-
gence when importing keys, and made sure that e.g. subkey binding signatures are verified,
and that the order of packets is correct.

[Procedure]port-ascii-armored? port
Returns false if the data at the beginning of port doesn’t look like a valid binary
OpenPGP packet. The port must be a binary input port. The port position is not
changed.

[Procedure]get-openpgp-packet port
Reads an OpenPGP packet from port, which must be a binary input port. An error
is raised if the packet type is unimplemented.

[Procedure]get-openpgp-keyring p
Reads a keyring from the binary input port p. Returns a hashtable where all primary
keys and subkeys are indexed by their key ID (an integer). The values in the hashtable
are lists that contain all OpenPGP packets associated with each key. No effort at all
is made to verify that keys have valid signatures.

Warning: this can take a while if the keyring is very big.

[Procedure]get-openpgp-keyring/keyid p keyid
Searches the binary input port p for the public key with the given keyid. Returns a
hashtable similar to get-openpgp-keyring, except it will only contain the primary
and subkeys associated with the keyid.

Chapter 2: Library reference 35

The keyid can be either a 64 or 32 bit exact integer.

Warning: this is faster than get-openpgp-keyring, but is still rather slow with big
keyrings. The speed depends on the SHA-1 implementation.

[Procedure]get-openpgp-detached-signature/ascii p
Reads a detached OpenPGP signature from the textual input port p. Returns either
an OpenPGP signature object or the end of file object.

These signatures can be created with e.g. gpg -a --detach-sign filename.

[Procedure]verify-openpgp-signature sig keyring p
Verifies the signature data in sig. The keyring hashtable is used to find the public
key of the signature issuer. The signed data is read from the binary input port p.

This procedure returns two values. These are the possible combinations:

• good-signature key-data – The signature matches the data. The key-data con-
tains the public key list that was used to verify the signature.

• bad-signature key-data – The signature does not match the data. The key-data
is the same as above.

• missing-key key-id – The issuer public key for the signature was not found in
the keyring. The key-id is the 64-bit key ID of the issuer.

[Procedure]openpgp-signature? obj
True if obj is an OpenPGP signature object. Such objects are read with get-

openpgp-detached-signature/ascii and are also contained in keyring entries.

[Procedure]openpgp-signature-issuer sig
The 64-bit key ID of the OpenPGP public key that issued the signature sig.

[Procedure]openpgp-signature-public-key-algorithm sig
Returns the name of the public key algorithm used to create the signature sig. This
is currently the symbol dsa or rsa.

[Procedure]openpgp-signature-hash-algorithm sig
The name of the message digest algorithm used to create the signature sig. This is
currently one of md5, sha-1, ripe-md160 (unsupported), sha-224, sha-256, sha-384
or sha-512.

[Procedure]openpgp-signature-creation-time sig
An SRFI-19 date object representing the time at which the signature sig was created.

[Procedure]openpgp-signature-expiration-time sig
An SRFI-19 date object representing the time at which the signature sig expires.
Returns #f if there’s no expiration time.

[Procedure]openpgp-user-id? obj
True if obj is an OpenPGP user id.

[Procedure]openpgp-user-id-value user-id
The string value of the user-id. This is often the name of the person who owns the
key.

Chapter 2: Library reference 36

[Procedure]openpgp-user-attribute? obj
True if obj is an OpenPGP user attribute. Attributes are used to encode JPEG
images. There’s currently no way to access the image.

[Procedure]openpgp-public-key? obj
True if obj is an OpenPGP primary key or subkey.

[Procedure]openpgp-public-key-subkey? key
True if obj is a subkey.

[Procedure]openpgp-public-key-value key
The DSA or RSA public key contained in the OpenPGP public key. The value
returned has the same type as the (crypto weinholt dsa) or (crypto weinholt

rsa).

[Procedure]openpgp-public-key-fingerprint key
The fingerprint of the OpenPGP public key as a bytevector. This is an SHA-1 digest
based on the public key values.

[Procedure]openpgp-format-fingerprint bv
Formats the bytevector bv, which was presumably created by openpgp-public-key-

fingerprint, as a string in the format preferred for PGP public key fingerprints.

[Procedure]openpgp-public-key-id key
The 64-bit key ID of the OpenPGP public key.

Version history:

• (1 0) – Initial version.

• (1 1) – Added get-openpgp-packet and port-ascii-armored?.

2.3.13 Password hashing

The procedure provided by (weinholt crypto password) is the same type of procedure
that is called crypt in the standard C library. It is used for password hashing, i.e. it
scrambles passwords. This is a method often used when passwords need to be stored in
databases.

The scrambling algorithms are based on cryptographic primitives but have been modi-
fied so that they take more time to compute. They also happen to be quite annoying to
implement.

Only DES and MD5 based hashes are currently supported.

[Procedure]crypt password salt
Scrambles a password using the given salt. The salt can also be a hash. The returned
hash will be prefixed by the salt.

A fresh random salt should be used when hashing a new password. The purpose of
the salt is to make it infeasible to reverse the hash using lookup tables.

To verify that a password matches a hash, you can do something like (string=? hash

(crypt password hash)).

Chapter 2: Library reference 37

(import (weinholt crypto password))

(crypt "test" "..")

⇒ "..9sjyf8zL76k"

(crypt "test" "1RQ3YWMJd$")

⇒ "1RQ3YWMJd$oIomUD5DCxenAs2icezcn."

(string=? "1ggKHY.Dz$fNBcmNFTa1BFGXoLsRDkS."

(crypt "test" "1ggKHY.Dz$fNBcmNFTa1BFGXoLsRDkS."))

⇒ #t

Version history:

• (1 0) – Initial version.

2.3.14 RSA public key encryption and signatures

The (weinholt crypto rsa) library implements the RSA (Rivest, Shamir and Adleman)
algorithm and a few helpers.

[Procedure]make-rsa-public-key n e
Returns an RSA public key object containing the modulus n and the public exponent
e.

[Procedure]rsa-public-key? obj
True if obj is a public RSA key.

[Procedure]rsa-public-key-n key

[Procedure]rsa-public-key-modulus key
Returns the modulus of key.

[Procedure]rsa-public-key-e key

[Procedure]rsa-public-key-public-exponent key
Returns the public exponent of key.

[Procedure]rsa-public-key-from-bytevector bytevector
Parses bytevector as an ASN.1 DER encoded public RSA key. The return value can
be used with the other procedures in this library.

[Procedure]rsa-public-key-length key
Returns the number of bits in the modulus of key. This is also the maximum length
of data that can be encrypted or decrypted with the key.

[Procedure]rsa-public-key-byte-length key
Returns the number of 8-bit bytes required to store the modulus of key.

[Procedure]make-rsa-private-key n e d [p q exponent1 exponent2 coefficient]
Returns an RSA private key object with the given modulus n, public exponent e, and
private exponent d.

The other parameters are used to improve the efficiency of rsa-encrypt. They are
optional and will be computed if they are omitted.

Chapter 2: Library reference 38

[Procedure]rsa-private-key? obj
True if obj is a private RSA key.

[Procedure]rsa-private-key-n key

[Procedure]rsa-private-key-modulus key
Returns the modulus of key.

[Procedure]rsa-private-key-public-exponent key
Returns the public exponent of key. This exponent is used for encryption and signature
verification.

[Procedure]rsa-private-key-d key

[Procedure]rsa-private-key-private-exponent key
Returns the private exponent of key. This exponent is used for decryption and signa-
ture creation.

[Procedure]rsa-private-key-prime1 key

[Procedure]rsa-private-key-prime2 key
These two procedures return the first and second prime factors (p,q) of the modulus
(n = pq).

[Procedure]rsa-private-key-exponent1 key
This should be equivalent to (mod d (- p 1)). It is used to speed up rsa-decrypt.

[Procedure]rsa-private-key-exponent2 key
This should be equivalent to (mod d (- q 1)). It is used to speed up rsa-decrypt.

[Procedure]rsa-private-key-coefficient key
This should be equivalent to (expt-mod q -1 p). It is used to speed up rsa-decrypt.

[Procedure]rsa-private->public key
Uses the modulus and public exponent of key to construct a public RSA key object.

[Procedure]rsa-private-key-from-bytevector bytevector
Parses bytevector as an ASN.1 DER encoded private RSA key. The return value can
be used with the other procedures in this library.

[Procedure]rsa-private-key-from-pem-file filename
Opens the file and reads a private RSA key. The file should be in Privacy Enhanced
Mail (PEM) format and contain an ASN.1 DER encoded private RSA key.

Encrypted keys are currently not supported.

[Procedure]rsa-encrypt plaintext key
Encrypts the plaintext integer using the key, which is either a public or private RSA
key.

plaintext must be an exact integer that is less than the modulus of key.

Chapter 2: Library reference 39

[Procedure]rsa-decrypt ciphertext key
Decrypts the ciphertext integer using the key, which must be a private RSA key.

ciphertext must be an exact integer that is less than the modulus of key.

(import (weinholt crypto rsa))

(let ((key (make-rsa-private-key 3233 17 2753)))

(rsa-decrypt (rsa-encrypt 42 key) key))

⇒ 42

[Procedure]rsa-decrypt/blinding ciphertext key
This performs the same function as rsa-decrypt, but it uses RSA blinding. It has
been shown that the private key can be recovered by measuring the time it takes to
run the RSA decryption function. Use RSA blinding to protect against these timing
attacks.

For more technical information on the subject, see Paul C. Kocher’s article Timing
Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.

It is often not enough to just use the plain encryption and decryption procedures; a
protocol for what to put in the plaintext should also be used. PKCS #1 (RFC 3447) is
a standard for how to perform RSA encryption and signing with padding. New protocols
should use one of the other protocols from the RFC.

[Procedure]rsa-pkcs1-encrypt plaintext public-key
Pads and encrypts the plaintext bytevector using public-key, a public RSA key. The
return value is an integer.

The plaintext can’t be longer than the length of the key modulus, in bytes, minus 11.

[Procedure]rsa-pkcs1-decrypt ciphertext private-key
The inverse of rsa-pkcs1-encrypt. Decrypts the ciphertext integer using private-key,
a private RSA key. The padding is then checked for correctness and removed.

(import (weinholt crypto rsa))

(let ((key (make-rsa-private-key

288412728347463293650191476303670753583

65537

190905048380501971055612558936725496993)))

(utf8->string

(rsa-pkcs1-decrypt

(rsa-pkcs1-encrypt (string->utf8 "Hello")

(rsa-private->public key))

key)))

⇒ "Hello"

[Procedure]rsa-pkcs1-decrypt-signature signature public-key
Decrypts the signature (a bytevector) contained in the signature integer by using the
public-key. The signature initially contains PKCS #1 padding, but this is removed.

[Procedure]rsa-pkcs1-decrypt-digest signature public-key
This performs the same operation as rsa-pkcs1-decrypt-signature, except it then
treats the decrypted signature as a DER encoded DigestInfo. The return value is a
list containing a digest algorithm specifier and a digest.

http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf
http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf

Chapter 2: Library reference 40

Version history:

• (1 0) – Initial version.

• (1 1) – Implemented private key operations.

2.3.15 Secure Hash Algorithm 1

The interface provided by (weinholt crypto sha-1) is identical to the one provided by the
MD5 library, except every procedure is prefixed by sha-1 instead of md5. See Section 2.3.11
[crypto md5], page 32.

SHA-1 also has a maximum message size of 264− 1 bits, but the message digests are 160
bits instead of MD5’s 128.

Version history:

• (1 0) – Initial version.

• (1 1) – Added sha-1-length, sha-1-96-copy-hash!, sha-1-hash=? and sha-1-96-

hash=?.

2.3.16 Secure Hash Algorithm 2

The interface provided by (weinholt crypto sha-2) is identical to the one provided by the
MD5 library, but instead of md5, every procedure is prefixed by sha-224, sha-256, sha-384
or sha-512. In addition the procedures that operate on the leftmost 96 bits are instead
defined for the leftmost 128 bits (e.g. sha-512-128-hash=?). See Section 2.3.11 [crypto
md5], page 32.

SHA-224 and SHA-256 have a maximum message size of 264 − 1 bits. For SHA-384 and
SHA-512 the maximum is 2128− 1 bits. The message digests produced by SHA-224 are 224
bits, and so on.

Version history:

• (0 0) – Initial version.

• (1 1) – Added sha-224-length, sha-256-length, sha-384-length, sha-512-length
that return the length of a digest in bytes. Added the comparison predicates sha-

224-hash=?, sha-256-hash=?, sha-384-hash=? sha-512-hash=? that run in con-
stant time. Added procedures for truncated digests: sha-224-128-hash=?, sha-256-
128-hash=?, sha-384-128-hash=? sha-512-128-hash=?, sha-224-128-copy-hash!,
sha-256-128-copy-hash!, sha-384-128-copy-hash! and sha-512-128-copy-hash!.
Now uses the correct definition of HMAC-SHA-384 and HMAC-SHA-512. The HMACs
now also handle key lengths larger than the block size.

2.3.17 SSH public key format conversion

Use (weinholt crypto ssh-public-key) to convert public RSA, DSA, and ECDSA keys
from records to the binary SSH public key format, and the other way around. SSH is the
name of a network protocol for secure terminal connections defined by RFCs 4250-4254.
The key format is specified by RFC 4716. ECDSA keys are specified by RFC 5656.

The types used for RSA, DSA and ECDSA keys in this library are the same types used
elsewhere. The ECDSA keys must have the record type ecdsa-sha-2-public-key.

Future work would be to implement parsing of the various textual formats that contain
Base64 public SSH keys.

Chapter 2: Library reference 41

[Procedure]get-ssh-public-key p
Reads a public RSA/DSA/ECDSA key encoded in the SSH public key format from
the binary input port p.

[Procedure]ssh-public-key->bytevector key
Converts the public RSA/DSA/ECDSA key to the SSH public key format.

[Procedure]ssh-public-key-algorithm key
Returns the SSH algorithm identifier of key. For RSA keys this is "ssh-rsa", for
DSA keys it is "ssh-dss", and for ECDSA keys it is "ecdsa-sha2-[identifier]"
where [identifier] identifies the curve.

[Procedure]ssh-public-key-fingerprint key
The MD5 based fingerprint of the RSA/DSA/ECDSA key in the same format used
by common SSH software and specified by RFC 4716.

[Procedure]ssh-public-key-random-art key
The random art of the RSA/DSA/ECDSA key. This is a visual representation of the
key can is easier for humans to distinguish than fingerprints. This is the same art
that OpenSSH’s VisualHostKey feature displays.

Version history:

• (1 0) – Initial version.

• (1 1) – Added ssh-public-key-algorithm. Added support for ecdsa-sha2-* keys
using the elliptic curves nistp256, nistp384, and nistp521.

2.3.18 X.509 Public-Key Infrastructure

The (weinholt crypto x509) library implements parts of ITU-T’s X.509 standard for
public-key infrastructure.

An X.509 certificate is a data structure that contains a public RSA or DSA key and
some identifying information. There is a subject and an issuer (and lots of details). The
subject specifies who the certificate belongs to, and the issuer specifies who signed it. Cer-
tificate path validation is used to get from a trusted issuer to the subject, often via several
intermediates.

X.509 certificates are used in many places, e.g. TLS, S/MIME email and IPsec.

[Procedure]certificate? obj
True if obj is an X.509 certificate.

[Procedure]certificate-from-bytevector bv [start end]
Reads an X.509 certificate from the bytevector bv. The certificate is in the ASN.1
DER format customarily used for X.509 certificates. For certificates in PEM format,
first read them with get-delimited-base64. See Section 2.7.1 [text base64], page 79.

[Procedure]certificate-public-key certificate
Returns the public key contained in the certificate. The return value’s type is either an
RSA or a DSA public key. See Section 2.3.7 [crypto dsa], page 27. See Section 2.3.14
[crypto rsa], page 37.

Chapter 2: Library reference 42

[Procedure]validate-certificate-path path [common-name time CA-cert]
Returns ok if the certificates in the path list form a valid certificate path. A valid
certificate path begins with a trusted CA certificate and ends with an end entity’s
certificate. Each certificate in the chain signs the next certificate. This is intended
to form a chain of trust from a certificate you already trust (the CA certificate) to a
new certificate, the end entity’s certificate.

Optionally a common-name string can be given. This is normally a good idea. If
you’ve tried to connect to a service at the domain name example.com, you might like
to know that the certificate it presents actually belongs to example.com. Both the
common name and subjectAltName fields of the certificate are checked. Currently
only tested with domain names.

An SRFI-19 time can also optionally be given, in which case it is used instead of the
system’s current time.

If the optional CA-cert argument is given it is a trusted certificate that will be used
to validate the start of the path. If this argument is given then no other trusted
certificates will be tried.

[Parameter]CA-path

[Parameter]CA-file

[Parameter]CA-procedure
These SRFI-39 parameters can be used to provide the validate-certificate-path
procedure with trusted Certificate Authority (CA) certificates, also known as root
certificates. It is beyond the scope of this library collection to provide you with
trusted certificates. Many operating systems have such collections, e.g. Debian’s
ca-certificates package. Technically, a CA certificate is a self-issued certificate with
correctly set “basic constraints” and “key usage” attributes.

The CA-path parameter should be the name (ending in the path separator character,
if any) of a directory containing files named by OpenSSL’s c rehash program. The
files contain PEM encoded CA certificates. The filenames are partially a hash which
also can be retrieved from the name-hash value in the issuer/subject alists. Default:
"/etc/ssl/certs/".

The CA-file parameter is not yet implemented. In the future this will be the
name of a file which contains trusted certificates. Default: "/etc/ssl/certs/ca-

certificates.crt".

The CA-procedure parameter is a procedure which takes a single argument: an issuer
alist. If you have the requested certificate, return it. Otherwise return #f. For
forward compatibility the procedure should accept any number of arguments. Default:
(lambda (issuer . _) #f)

The following part of the library is for more advanced uses.

[Procedure]certificate-key-usage certificate
Returns the keyUsage extension data from certificate. If the extension is absent
then the return value is #f. Otherwise it is a list in which the possible entries
are: digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment,
keyAgreement, keyCertSign, cRLSign, encipherOnly, and decipherOnly. See RFC

Chapter 2: Library reference 43

5280 for an explanation of their meaning. If you are implementing a protocol where
keyUsage is important, the specification will probably mention it.

[Procedure]certificate-tbs-data certificate
Returns the To Be Signed (TBS) part of certificate as a DER encoded bytevector.
Except for the certificate’s signature, the whole certificate is contained in the TBS
data.

[Procedure]decipher-certificate-signature subject-cert issuer-cert
Uses the public key of issuer-cert to decipher the signature on subject-cert.

Version history:

• (0 0) – Initial version.

2.4 Machine code disassemblers

All disassemblers provided here use the same method of signalling undefined/invalid op-
codes. The following procedure can be used to guard against such errors:

[Procedure]invalid-opcode? obj
When an invalid opcode is encountered an exception with the &invalid-opcode con-
dition is raised. Use invalid-opcode? to guard against it.

The disassemblers take an argument that is called a collector. It is either #f or a
procedure of the following form: (lambda (tag . bytes) body). The tag is specific to the
architecture, but the bytes are the bytes forming the instruction. The procedure is used
to tell the caller what function each byte of an instruction performs. This works best
for architectures that use variable-length instructions. For most instructions there will be
multiple calls to the collector.

2.4.1 Intel 8080/8085 disassembler

The (weinholt disassembler i8080) library provides a disassembler for the Intel 8080
architecture. It was an 8-bit architecture used in many micros and even the DEC VT100.
It was also the predecessor of the Intel 8086.

[Procedure]get-instruction binary-input-port collector
Reads one instruction from the binary-input-port and returns it in symbolic form.
For a description of the collector, see Section 2.4 [disassembler], page 43.

(import (weinholt disassembler i8080))

(get-instruction (open-bytevector-input-port

#vu8(#x22 #x01 #x01))

#f)

⇒ (shld (mem16+ 257))

Version history:

• (1 0) – Initial version.

Chapter 2: Library reference 44

2.4.2 Freescale 68HC12 disassembler

The (weinholt disassembler m68hc12) library provides a disassembler for the Freescale
68HC12 architecture (formerly Motorola 68HC12 and sometimes called 68HCS12, HC12 or
CPU12). It is a 16-bit architecture used in microcontrollers.

[Procedure]get-instruction binary-input-port collector
Reads one instruction from the binary-input-port and returns it in symbolic form.
For a description of the collector, see Section 2.4 [disassembler], page 43.

(import (weinholt disassembler m68hc12))

(get-instruction (open-bytevector-input-port

#vu8(#x18 #x01 #xAE #x00 #x00))

#f)

⇒ (movw (0) (pre- 2 sp))

Version history:

• (1 0) – Initial version.

2.4.3 MIPS II disassembler

The (weinholt disassembler mips) library provides a disassembler for most 32-bit MIPS
II instructions. MIPS is a RISC architecture and all instructions have the same length.

[Procedure]get-instruction binary-input-port endianness collector
Disassembles one instruction from the binary-input-port and returns it in symbolic
form. The endianness specifies if instructions are read in big or little endianness. For
a description of the collector, see Section 2.4 [disassembler], page 43.

(import (weinholt disassembler mips))

(get-instruction (open-bytevector-input-port

#vu8(#x10 #x40 #x00 #x02))

(endianness big)

#f)

⇒ (beq $v0 $zero ($pc 8))

Version history:

• (1 0) – Initial version.

2.4.4 Intel x86-16/32/64 disassembler

The (weinholt disassembler x86) library is a disassembler for the Intel x86 architecture.
It supports 16-bit, 32-bit and 64-bit modes as well as most modern instruction encodings,
including the VEX prefix used by Intel AVX.

The disassembler does not keep track of the instruction pointer, so relative offsets are
returned as they appear in the instruction encoding. If you wish to show the destination
for branches, or the actual offset for AMD64’s RIP-relative addressing, you will need to
compute the offset yourself.

[Procedure]get-instruction binary-input-port mode collector
Reads a single instruction from the given binary-input-port. The mode is one of 16,
32 or 64 (which roughly correspond to real, protected and long mode).

Chapter 2: Library reference 45

The collector is either #f or a procedure that takes a symbolic tag and a variable
number of bytes. The tag is one of the symbols modr/m, sib, disp, immediate, /is4,
prefix and opcode. The x86 instruction set uses variable length instructions (of up
to 15 bytes) and the collector procedure can be used to find out the type of data each
byte of an instruction contains.

The returned instructions have the same operand order as Intel’s documentation uses,
i.e. the left operand is the destination.

(import (weinholt disassembler x86))

(get-instruction (open-bytevector-input-port

#vu8(#x69 #x6c #x6c #x65 #x01 #x00 #x00 #x00))

64 #f)

⇒ (imul ebp (mem32+ rsp 101 (* rbp 2)) 1)

(get-instruction (open-bytevector-input-port

#vu8(196 227 113 72 194 49))

64 (lambda x (display x) (newline)))

a (prefix 196 227 113)

a (opcode 72)

a (modr/m 194)

a (/is4 49)

⇒ (vpermiltd2ps xmm0 xmm1 xmm2 xmm3)

(get-instruction (open-bytevector-input-port #vu8(#xEB #x20))

64 #f)

⇒ (jmp (+ rip 32))

Version history:

• (1 0) – Initial version.

• (1 1) – get-instruction reads at most 15 bytes.

2.5 Network protocols

2.5.1 Internet Relay Chat

The (weinholt net irc) library provides low-level procedures for parsing and formatting
IRC protocol commands. It makes it easy to split incoming commands into parts and to
format outgoing commands. There are also helpers for various other parsing needs.

The IRC protocol is standardized by RFCs 2810-2813, but servers very often (always?)
disregard the RFCs. They do provide good guidelines for what should work.

[Procedure]parse-message message [remote-server]
This procedure splits an IRC message into three parts: prefix, command and a list of
arguments. The command is either a symbol or a number. If the message does not
have a prefix the remote-server argument will be used instead, because it is implied
by the protocol.

(import (weinholt net irc))

(parse-message

":irc.example.net PONG irc.example.net :irc.example.net")

Chapter 2: Library reference 46

⇒ "irc.example.net"

⇒ PONG

⇒ ("irc.example.net" "irc.example.net")

(parse-message

":user!ident@example.com PRIVMSG #test :this is a test")

⇒ "user!ident@example.com"

⇒ PRIVMSG

⇒ ("#test" "this is a test")

(parse-message "PING irc.example.net" "irc.example.net")

⇒ "irc.example.net"

⇒ PING

⇒ ("irc.example.net")

(parse-message "PING irc.example.net")

⇒ #f

⇒ PING

⇒ ("irc.example.net")

[Procedure]parse-message-bytevector bv [start end remote-server]
This procedure does the same thing parse-message does, except it works on bytevec-
tors. This is useful because the IRC protocol does not have a standard character
encoding. Different channels on IRC often use different encodings.

[Procedure]format-message-raw port codec prefix cmd parameters ...
Formats and outputs an IRC message to the given port, which must be in binary
mode.

The codec is a codec, meaning the value returned by e.g. utf-8-codec or latin-1-
codec. The codec is used to transcode the parameters.

The prefix is the name of the server or client that originated the message. IRC clients
should use #f as prefix when sending to a server.

The cmd is a symbol or string representing an IRC command, but it can also be
an integer (which must be be between 000 and 999). Only servers send numerical
commands.

The rest of the arguments are the parameters for the given command, which can be
either numbers, strings or bytevectors. Only the last of the parameters may contain
whitespace. The maximum number of parameters allowed by the protocol is 15. Each
IRC protocol command takes a pre-defined number of parameters, so e.g. if cmd is
PRIVMSG then you must only pass two parameters.

(import (weinholt net irc))

(utf8->string

(call-with-bytevector-output-port

(lambda (port)

(format-message-raw port (utf-8-codec)

"irc.example.net" 1 "luser"

"Welcome to the IRC"))))

⇒ ":irc.example.net 001 luser :Welcome to the IRC\r\n"

Chapter 2: Library reference 47

(utf8->string

(call-with-bytevector-output-port

(lambda (port)

(format-message-raw port (utf-8-codec)

#f ’NOTICE "#example"

"Greetings!"))))

⇒ "NOTICE #example Greetings!\r\n"

[Procedure]format-message-and-verify port codec prefix cmd parameters ...
This procedure works just like format-message-raw, except before writing the message
it parses the formatted message and compares it with the input to make sure it is the
same. This prevents some attacks against IRC bots.

(import (weinholt net irc))

(utf8->string

(call-with-bytevector-output-port

(lambda (port)

(format-message-and-verify

port (utf-8-codec) #f ’NOTICE

"#scheme" "announcing the 2^32th irc library!"))))

⇒ "NOTICE #scheme :announcing the 2^32th irc library!\r\n"

This example shows what happens when a parameter contains a newline, which is a
common attack against bots. The command after the newline would be sent to the
server, and the bot would exit all channels. Instead an exception is raised:

(utf8->string

(call-with-bytevector-output-port

(lambda (port)

(format-message-and-verify

port (utf-8-codec) #f ’NOTICE

"#example" "Querent: the answer is \r\nJOIN 0"))))

error &irc-format

[Procedure]format-message-with-whitewash port codec prefix cmd parameters ...
This provides an alternative to format-message-and-verify which is useful if you’re
not concerned about data integrity, so to speak. It replaces all bad characters with
space before transmitting.

(utf8->string

(call-with-bytevector-output-port

(lambda (port)

(format-message-with-whitewash

port (utf-8-codec) #f ’NOTICE

"#example" "Querent: the answer is \r\nJOIN 0"))))

⇒ "NOTICE #example :Querent: the answer is JOIN 0\r\n"

[Procedure]irc-parse-condition? obj
Returns #t is obj is an &irc-parse condition. The message parsing procedures use
this condition when they detect a malformed message.

Chapter 2: Library reference 48

[Procedure]irc-format-condition? obj
Returns #t is obj is an &irc-format condition. The message formatting procedures
use this condition when they are unable to format a message.

[Procedure]extended-prefix? str
The prefix in an IRC message can either be a server name or an extended prefix which
identifies a client. Extended prefixes look like nickname!user@host.

[Procedure]prefix-split str
Splits an extended prefix into its parts and returns three values: nickname, user and
host.

[Procedure]prefix-nick str
Returns the nickname part of an extended prefix.

[Procedure]parse-isupport list
Parses an ISUPPORT list. The return value is an alist.

See http://www.irc.org/tech_docs/005.html for more on ISUPPORT.

[Procedure]isupport-defaults
Returns an alist of default ISUPPORT values.

[Procedure]string-irc=? str1 str2 [mapping]
Compares str1 and str2 for equality. The comparison is case-insensitive and uses
the specified mapping to compare characters. This procedure is useful for comparing
nicknames.

The mapping should be one of rfc1459, ascii or strict-rfc1459. Servers indicate
in the CASEMAPPING ISUPPORT parameter which mapping they use.

The first IRC servers used Swedish ASCII for nicknames, so the nicknames sm|rg}s
and SM\RG]S are equivalent on some servers.

[Procedure]string-upcase-irc str mapping
Upcases str using the given case mapping.

[Procedure]string-downcase-irc str mapping
Downcases str using the given case mapping.

[Procedure]ctcp-message? str
Returns #t if the str represents a CTCP message. This is currently the extent of this
library’s CTCP support. CTCP is used for sending files, opening direct connections
between clients, checking client versions, asking for the time, pinging clients, doing
“action” style messages, and some other stuff.

[Procedure]irc-match? pattern input
Returns #t if the pattern, which can contain wildcards, matches the input. Otherwise
returns #f. Strings containing wildcards are called masks, and they are used in e.g.
channel ban lists.

The pattern follows the syntax specified in section 2.5 of RFC2812. A #* matches
zero or more characters and #\? matches any single character. The comparison is
case-insensitive. Wildcard characters can be escaped with #\\.

http://www.irc.org/tech_docs/005.html

Chapter 2: Library reference 49

(import (weinholt net irc))

(irc-match? "a?c" "abc")

⇒ #t

(irc-match? "a*c" "ac")

⇒ #t

(irc-match? "a*c" "acb")

⇒ #f

[Procedure]parse-channel-mode prefix chanmodes mode-list
Uses the ISUPPORT data in prefix and chanmodes to parse a MODE command for a
channel. The target is not included in the mode-list. To keep track of changes to
who is op’d and voice’d (and half-op’d) you can use this procedure together with the
server’s ISUPPORT PREFIX data.

(parse-channel-mode (cdr (assq ’PREFIX (isupport-defaults)))

(cdr (assq ’CHANMODES (isupport-defaults)))

’("+o-o+e-e+l-l+km+-be"

"op" "deop" "ex" "unex"

"50" "key" "unban"))

⇒
((+ #\o "op")

(- #\o "deop")

(+ #\e "ex")

(- #\e "unex")

(+ #\l "50")

(- #\l #f)

(+ #\k "key")

(+ #\m channel)

(- #\b "unban")

(? #\e channel))

Version history:

• (1 0) – Initial version.

• (2 0) – Replaced swe-ascii-string-ci=? with string-irc=?, which uses the
CASEMAPPING ISUPPORT parameter. Added string-upcase-irc, string-downcase-
irc, parse-isupport, isupport-defaults and ctcp-message?.

• (2 1) – Added irc-match?.

• (2 2) – Added parse-channel-mode and fixed handling of intra-word whitespace in
the parser and empty parameters in the formatter.

2.5.2 Blowcrypt/FiSH encryption for IRC

The (weinholt net irc fish) library provides procedures for interacting with IRC clients
that use Blowcrypt/FiSH encryption. Messages are encrypted with Blowfish in ECB mode
and then encoded with a peculiar base64 encoding. Keys can be exchanged with Diffie-
Hellman (vulnerable to middleman attacks) or they can be pre-shared. FiSH is useful if
you want to draw attention to your communications.

There is currently no way to initialize key-exchange.

Chapter 2: Library reference 50

Blowcrypt/FiSH supports both private messages and public channels. If you only need
private messages then OTR provides a much better protocol. See Section 2.5.3 [net otr],
page 50.

[Procedure]fish-message? str
Returns #f is the string is not a FiSH message.

[Procedure]fish-decrypt-message msg key
Decrypts a FiSH message. The msg is the line that the remote client sent to you.

[Procedure]fish-encrypt-message msg key
Encrypts the string msg with FiSH encryption. Returns a string containing the
plaintext. There is no verification that the key was correct and the returned string
might be garbage.

[Procedure]fish-key-init? str
Returns #f is str is not a FiSH key-exchange initialization request.

[Procedure]fish-generate-key init-msg
Finishes the DH1080 key-exchange request contained in init-msg. Returns two values:
the newly generated key and a response for the remote client. There is no protection
against middleman attacks.

[Procedure]make-fish-key str
The str is expanded and can then be used with fish-decrypt-message and fish-

encrypt-message.

Version history:

• (1 0) – Initial version.

2.5.3 Off-the-Record Messaging

The (weinholt net otr) library provides Off-the-Record Messaging (OTR), which is a
security protocol for private chat. It can be tunneled over any protocol that guarantees
in-order delivery (e.g. IRC or XMPP). It provides encryption, authentication, deniability
and perfect forward secrecy.

This library does not manage user identities, which is something the OTR Development
Team’s C library does. This choice was made to keep the implementation simple and focused
on the protocol only.

The website for OTR is http://www.cypherpunks.ca/otr/.

[Procedure]otr-message? str
Returns #t if str, which is a message from a remote party, contains an OTR message.
If it is an OTR message you should look up the OTR state that corresponds to the
remote party (possibly make a new state) and call otr-update!.

[Procedure]make-otr-state dsa-key mss [instance-tag [versions]]
Creates an OTR state value given the private DSA key dsa-key and a maximum
segment size mss. The state is used to keep track of session keys and incoming
message fragments.

http://www.cypherpunks.ca/otr/

Chapter 2: Library reference 51

The dsa-key must have a 160-bit q-parameter because of details in the protocol and
limitations of other implementations. A 1024-bit DSA key will work. See Section 2.3.7
[crypto dsa], page 27.

The maximum segment size mss is used to split long OTR messages into smaller parts
when OTR is used over a protocol with a maximum message size, e.g. IRC.

If an instance-tag is specified it must be a 32-bit integer not less than #x100. If it is
omitted or #f an instance tag will be randomly generated. OTR version 3 uses the
instance tags to identify which OTR state messages belongs to. Be sure to read the
documentation for otr-state-our-instance-tag. New for Industria 1.5.

If versions is not omitted it must be a list of acceptable OTR protocol versions. The
default is (2 3). New for Industria 1.5.

[Procedure]otr-update! state str
Processes the str message, which came from the remote party, and updates the state.
Use otr-empty-queue! to retrieve scheduled events.

[Procedure]otr-send-encrypted! state msg
This is used to send a message to the remote party. It encrypts and enqueues the msg
bytevector and updates the state. Use otr-empty-queue! to retrieve the encrypted
and formatted messages that should be sent to the remote party.

The msg must not contain a NUL (0) byte.

[Procedure]otr-authenticate! state secret [question]
Initiate or respond to an authentication request. After calling this procedure you
should use otr-empty-queue!, just like with otr-send-encrypted!.

The authentication protocol can be used to verify that both partyies know the secret
bytevector. The secret is never revealed over the network and is not even transmitted
in an encrypted form. The protocol used is the Socialist Millionaires’ Protocol (SMP),
which is based on a series of zero-knowledge proofs.

[Procedure]otr-empty-queue! state
Returns and clears the event queue. The queue is a list of pairs where the symbol in
the car of the pair determines its meaning. These are the possible types:

• (outgoing . line) – The cdr is a string that should be sent to the remote party.

• (encrypted . msg) – The cdr is a string that contains a decrypted message
that was sent by the remote party.

• (unencrypted . msg) – The cdr is a string that was sent unencrypted by the
remote party. This happens when a whitespace-tagged message is received.

• (session-established . whence) – A session has been established with the
remote party. It is now safe to call otr-state-their-dsa-key, otr-state-
secure-session-id, otr-send-encrypted! and otr-authenticate!. The cdr
is the symbol from-there if the session was initiated by the remote party. Oth-
erwise it is from-here.

• (session-finished . whom) – The session is now finished and no new mes-
sages can be sent over it. The cdr is either the symbol by-them or by-us. Note:
there is currently no way to finish the session from the local side, so by-us is not
used yet.

Chapter 2: Library reference 52

• (authentication . expecting-secret) – The remote party has started the
authentication protocol and now expects you to call otr-authenticate!.

• (authentication . #t) – The authentication protocol has succeeded and both
parties had the same secret.

• (authentication . #f) – The authentication protocol has failed. The secrets
were not identical.

• (authentication . aborted-by-them) – The remote party has aborted the
authentication protocol.

• (authentication . aborted-by-us) – The local party has encountered an er-
ror and therefore aborted the authentication protocol.

• (they-revealed . k) – The remote party revealed an old signing key. This
is a normal part of the protocol and the key is sent unencrypted to ensure the
deniability property. You might like to reveal the key somehow yourself in case
you’re tunneling OTR over an encrypted protocol.

• (we-revealed . k) – The local party has revealed an old signing key. Note:
currently not used.

• (undecipherable-message . #f) – An encrypted message was received, but it
was not possible to decrypt it. This might mean e.g. that the remote and local
parties have different sessions or that a message was sent out of order.

• (remote-error . msg) – The remote party encountered a protocol error and
sent a plaintext error message (probably in English).

• (local-error . con) – There was an exception raised during processing of a
message. The cdr is the condition object.

• (symmetric-key-request . (protocol . data)) – The remote party has re-
quested that the extra symmetric key be used to communicate in some out-
of-band protocol. See otr-send-symmetric-key-request!. New for Industria
1.5.

For forward-compatibility you should ignore any pair with an unknown car. Most
messages are quite safe to ignore if you don’t want to handle them.

[Procedure]otr-state-their-dsa-key state
Returns the remote party’s public DSA key. This should be used to verify the remote
party’s identity. If the SMP authentication protocol succeeds you can remember the
hash of the key for the next session. The user could also verify the key’s hash by cell
phone telephone or something.

[Procedure]otr-state-our-dsa-key state
Returns the local party’s private DSA key. This is useful when the user is on the phone
with the remote party. First convert it to a public key with dsa-private->public

and then hash it with otr-hash-public-key.

[Procedure]otr-hash-public-key public-dsa-key
Hashes a public DSA key and formats it so that it can be shown to the OTR user.

[Procedure]otr-state-secure-session-id state
Returns the secure session ID associated with the OTR state.

Chapter 2: Library reference 53

[Procedure]otr-format-session-id id
Formats a secure session ID in the format that is recommended when the ID should
be shown to the OTR user.

The first part of the ID should be shown in bold if the session was initiated by the
local party. Otherwise the second part should be bold.

[Procedure]otr-state-version state
The OTR protocol version used by the state. This is either the integer 2 or the integer
3. New for Industria 1.5.

[Procedure]otr-state-mss state
Returns the current maximum segment size of the OTR state.

[Procedure]otr-state-mss-set! state int
Sets int as the maximum segment size of the OTR state.

OTR protocol version 3 defines an extra symmetric key.

[Procedure]otr-send-symmetric-key-request! state protocol data
This sends a message to the remote party that requests that it uses the extra sym-
metric key for some out-of-band protocol.

The remote party may ignore this request if the OTR protocol version (as returned
by otr-state-version) is not at least 3.

The protocol parameter is an unsigned 32-bit integer that indicates what the
key should be used for. At the time this manual is written there are no defined
uses. One might expect a list of uses to appear in the protocol documentation at
http://www.cypherpunks.ca/otr/.

The data parameter is a bytevector containing protocol-dependent data.

[Procedure]otr-state-symmetric-key state
This returns the extra symmetric key in the form of a 256-bit bytevector.

[Procedure]otr-tag whitespace? versions
Constructs a string that may be sent to a remote party as a request to start an OTR
session. New for Industria 1.5.

If whitespace? is true then a whitespace tag will be made. This tag may be appended
to a normal message sent by the user. If the recipient’s client supports OTR it may
start a session, but if it does not support OTR then hopefully it will not show the
whitespaces.

The versions argument specifies which OTR protocol versions should be present in
the tag. This can either be a list of version numbers or the symbol all.

[Procedure]otr-state-our-instance-tag state
This returns the local instance tag. It is new for Industria 1.5.

It is intended for instance tags to be persistent across client restarts. If the local
party crashes then the remote party may still have an OTR session established. If
the local client were then to change its instance tag on restart it would not receive any
messages from the remote party and would not send error messages. To the remote
party it would look like they were being ignored.

http://www.cypherpunks.ca/otr/

Chapter 2: Library reference 54

Isn’t this the most boring manual you’ve ever read?

Version history:

• Industria 1.5 introduced support for protocol version 3. This new version of the protocol
uses instance tags, which are used to distinguish between different OTR sessions. This
fixes a problem with chat networks that allow multiple logins. The new version also
defines an extra symmetrical key that can be used by out-of-band protocols.

2.5.4 Secure Shell (SSH)

The (weinholt net ssh) library hierarchy deals with the Secure Shell protocol. Both SSH
servers and clients can be written with these libraries. Some convenient abstractions are
currently missing though, e.g. a channel abstraction. These libraries hide the details of the
wire protocol and the cryptographic algorithms. The protocol is standardized by a series of
RFCs: 4250, 4251, 4252, 4253, 4254, etc.

No TCP server abstraction is provided by Industria. To make a server you will probably
need to use your implementation’s network abstractions.

It remains to be seen if this interface can be used for interactive applications. One
problem is get-ssh, which reads a whole SSH packet. This procedure is blocking. R6RS
doesn’t provide any procedures for event-driven programming, so the author has made no
effort to make this library work in an event-driven setting.

[Parameter]ssh-debugging
This SRFI-39 parameter controls debug output. It is a bit field with three bits
currently defined. Bit 0 enables general trace messages, bit 1 enables packet traces
and bit 2 enables packet hexdumps.

Default : #b000

[Parameter]ssh-debugging-port
This SRFI-39 parameter controls where debug output is written to. It defaults to the
error port that was current when the library top-level was run.

[Parameter]identification-protocol-version
This SRFI-39 parameter is used when constructing the local identification string. It
specifies which SSH protocol version number is supported.

Default : "2.0"

[Parameter]identification-software-version
This SRFI-39 parameter is used when constructing the local identification string. It
specifies the name and version of the client or server.

Default : "Industria 1"

[Parameter]identification-comments
This SRFI-39 parameter is used when constructing the local identification string. It
is #f or optionally a string of comments. This field is sometimes used to identify a
vendor.

Default : #f

Chapter 2: Library reference 55

The following parameters are when constructing the local kex exchange packet. It lists
the preferred algorithms. You may remove and reorder the algorithms, but you can’t intro-
duce new ones without first adding them to (weinholt net ssh algorithms). The defaults
may change in the future.

[Parameter]preferred-kex-algorithms
This is a list of key exchange algorithm names in the order they are preferred.

Default : ("diffie-hellman-group-exchange-sha256" "diffie-hellman-group-exchange-
sha1" "diffie-hellman-group14-sha1" "diffie-hellman-group1-sha1")

[Parameter]preferred-server-host-key-algorithms
This is a list of host key algorithm names in the order they are preferred. The server
may have more than one host key and this is used to decide between them.

Default : ("ecdsa-sha2-nistp256" "ecdsa-sha2-nistp384" "ecdsa-sha2-nistp521" "ssh-
rsa" "ssh-dss")

[Parameter]preferred-encryption-algorithms-client->server
This is a list of encryption algorithm names in the order they are preferred for com-
munication from the client to the server.

Default : ("aes128-ctr" "aes192-ctr" "aes256-ctr" "aes128-cbc" "aes192-cbc" "aes256-
cbc" "blowfish-cbc" "arcfour256" "arcfour128" "3des-cbc")

[Parameter]preferred-encryption-algorithms-server->client
This is a list of encryption algorithm names in the order they are preferred for com-
munication from the server to the client.

Default : ("aes128-ctr" "aes192-ctr" "aes256-ctr" "aes128-cbc" "aes192-cbc" "aes256-
cbc" "blowfish-cbc" "arcfour256" "arcfour128" "3des-cbc")

[Parameter]preferred-mac-algorithms-client->server
This is a list of message authentication code algorithms in the order they are preferred
for communication from the client to the server.

Default : ("hmac-md5" "hmac-sha1" "hmac-sha1-96" "hmac-md5-96")

[Parameter]preferred-mac-algorithms-server->client
This is a list of message authentication code algorithms in the order they are preferred
for communication from the server to the client.

Default : ("hmac-md5" "hmac-sha1" "hmac-sha1-96" "hmac-md5-96")

[Parameter]preferred-compression-algorithms-client->server
This is a list of compression algorithms for packets transmitted from the client to the
server.

Default : ("none")

[Parameter]preferred-compression-algorithms-server->client
This is a list of compression algorithms for packets transmitted from the server to the
client.

Default : ("none")

Chapter 2: Library reference 56

[Parameter]preferred-languages-client->server
This is currently not used.

Default : ()

[Parameter]preferred-languages-server->client
This is currently not used.

Default : ()

[Procedure]make-ssh-client binary-input-port binary-output-port
Starts an SSH client connection over the two given ports, which should be connected
to a server via TCP (or some other similar means).

If everything goes right an ssh-conn object is returned. The peer identification and
kexinit fields are valid.

[Procedure]make-ssh-server binary-input-port binary-output-port keys
Starts an SSH server connection over the two given ports, which should be connected
to a client via TCP (or some other similar means).

keys is a list of host keys. The currently supported key types are dsa-private-key

and ecdsa-sha-2-private-key.

If everything goes right an ssh-conn object is returned. The peer identification and
kexinit fields are valid.

[Procedure]ssh-key-exchange ssh-conn
This runs the negotiated key exchange algorithm on ssh-conn. After this is done the
client will have received one of the server’s public keys. The negotiated encryption
and MAC algorithms will have been activated.

[Procedure]ssh-conn-peer-identification ssh-conn
The identification string the peer sent. This is a string that contains the peer’s
protocol version, software version and optionally some comments.

[Procedure]ssh-conn-peer-kexinit ssh-conn
This is the peer’s key exchange initialization (kexinit) packet. It lists the peer’s
supported algorithms. See Section 2.5.4.2 [net ssh transport], page 68.

[Procedure]ssh-conn-host-key ssh-conn
The server’s public key. This has unspecified contents before the ssh-key-exchange
procedure returns.

[Procedure]ssh-conn-session-id ssh-conn
The session ID of ssh-conn. This has unspecified contents before the ssh-key-

exchange procedure returns.

[Procedure]ssh-conn-registrar ssh-conn
Returns a procedure that can be used to register parsers and formatters for SSH
packet types. The returned procedure should be given as an argument to register-

connection and register-userauth.

Chapter 2: Library reference 57

[Procedure]ssh-error ssh-conn who message code irritants ...
Sends a disconnect packet to the peer. The packet contains the message and the
code. The connection is then closed and an error is raised.

The error code constants are defined elsewhere. See Section 2.5.4.2 [net ssh transport],
page 68.

[Procedure]put-ssh ssh-conn pkt
Sends the SSH packet pkt to the peer of ssh-conn.

[Procedure]get-ssh ssh-conn
Reads an SSH packet object from the peer of ssh-conn. The end-of-file object will be
returned if the peer has closed the connection. The procedure blocks until a message
has been received. Any messages of the type ignore are ignored.

Packet types must be registered before they can be received. Initially only the trans-
port layer types are registered. If an unregistered type is received this procedure
returns a list of two items: the symbol unimplemented and the unparsed contents of
the packet. A packet of type unimplemented is sent to the peer.

[Procedure]close-ssh ssh-conn
Flushes the output port of ssh-conn, and then closes both the input and output ports.

[Procedure]flush-ssh-output ssh-conn
Flushes any pending output on ssh-conn.

The procedures below are used in the implementation of key re-exchange. After the initial
key exchange either party can initiate a key re-exchange. RFC 4253 has the following to
say on the subject:

It is RECOMMENDED that the keys be changed after each gigabyte of trans-
mitted data or after each hour of connection time, whichever comes sooner.
However, since the re-exchange is a public key operation, it requires a fair
amount of processing power and should not be performed too often.

The demonstration program secsh-client contains an example of how to initiate key
re-exchange. The server demonstration program honingsburk also handles key re-exchange,
but does not initiate it. See Section 3.4 [honingsburk], page 83.

[Procedure]build-kexinit-packet ssh-conn
Constructs and returns a key exchange packet for use by the local side.

[Procedure]key-exchange-packet? pkt
Returns #t if pkt should be given to process-key-exchange-packet for handling by
the key exchange logic.

[Procedure]ssh-key-re-exchange ssh-conn peer-kex local-kex
Initiates key re-exchange on ssh-conn. This requires the peer’s key exchange packet
peer-kex, and the local key exchange packet local-kex. The procedure returns before
the key re-exchange is finished. Both sides of the algorithm will need to communicate
to complete the exchange.

Chapter 2: Library reference 58

[Procedure]process-key-exchange-packet ssh-conn pkt
Updates the key exchange logic on ssh-conn with the contents of pkt. If the packet
is a kexinit packet and ssh-conn is a server, then this will automatically initiate the
key re-exchange algorithm.

The procedure may return the symbol finished to indicate that the key exchange
algorithm has finished and the new algorithms are used for packets sent to the peer.

Note: This interface is currently balanced in favor of servers. More experience in
using the library is needed to determine how to make the key re-exchange interface
better for clients. Suggestions are welcome.

Version history:

• (1 0) – Initial version.

2.5.4.1 Secure Shell Connection Protocol

The (weinholt net ssh connection) library implements record types, parsers and format-
ters for the connection protocol packets in SSH.

The connection protocol handles two types of communication: global requests and chan-
nels. The global requests can be used to setup TCP/IP port forwarding. Most commu-
nication over SSH passes through channels. Channels are opened with the channel-open

requests. The client and the server each assign an ID number to a channel: one ID is sent in
the channel-open packet, the other ID in the channel-open-confirmation packet. In In-
dustria all packets that are directed to a specific channel inherit from the channel-packet
record type and the ID can be found with the channel-packet-recipient procedure.

Strings and bytevectors may be used interchangeably when constructing packets. Strings
will automatically be converted with string->utf8. When these packets are received the
parser will either parse those fields either as a string or a bytevector. A bytevector will be
used when the field can contain more or less arbitrary data, e.g. filenames.

The text of this section uses the words “packet”, “message” and “request” interchange-
ably.

See RFC 4254 for a more detailed description of this protocol.

[Procedure]register-connection registrar
Registers the packet types for the connection protocol so that they may be received
and sent. A registrar may be obtained from an ssh-conn object using ssh-conn-

registrar.

[Procedure]make-global-request type want-reply?
Constructs a global request: a connection request not related to any channel. Some
global requests contain additional fields. These requests are represented by the
global-request/* packets.

[Procedure]global-request? obj
Returns true if obj is a global-request? packet.

[Procedure]global-request-type pkt
This field contains a string identifying the type of the request, e.g. "no-more-

sessions@openssh.com".

Chapter 2: Library reference 59

[Procedure]global-request-want-reply? pkt
This field is true if the sender expects a request-success or request-failure record
in response.

[Procedure]make-global-request/tcpip-forward want-reply? address port
Constructs a request that instructs the server to bind a TCP server port and forward
connections to the client.

[Procedure]global-request/tcpip-forward? obj
Returns true if obj is a global-request/tcpip-forward packet.

[Procedure]global-request/tcpip-forward-address req
This field is a string that represents the address to which the server should bind the
TCP server port. Some addresses are given special meaning:

"" The server should listen to all its addresses on all supported protocols
(IPv4, IPV6, etc).

"0.0.0.0"

The server should listen to all its IPv4 addresses.

"::" The server should listen to all its IPv6 addresses.

"localhost"

The server should listen to its loopback addresses on all supported pro-
tocols.

"127.0.0.1"

The server should listen to its IPv4 loopback address.

"::1" The server should listen to its IPv6 loopback address.

[Procedure]global-request/tcpip-forward-port req
This field is an integer representing the port number to which the server should bind
the TCP server port. If the number is 0 and want-reply? is true, the server will pick a
port number and send it to the client in a request-success packet (the port number
can be recovered with (unpack "!L" (request-success-data response))).

[Procedure]make-global-request/cancel-tcpip-forward want-reply? address
port

Constructs a message that undoes the effect of a global-request/tcpip-forward

request.

[Procedure]global-request/cancel-tcpip-forward? obj
Returns true if obj is a global-request/cancel-tcpip-forward packet.

[Procedure]global-request/cancel-tcpip-forward-address req
See global-request/tcpip-forward-address.

[Procedure]global-request/cancel-tcpip-forward-port req
See global-request/tcpip-forward-port.

[Procedure]make-request-success data
Constructs a packet which indicates that the previous global-request was successful.

Chapter 2: Library reference 60

[Procedure]request-success? obj
Returns true if obj is a request-success packet.

[Procedure]request-success-data pkt
This field contains a request-specific bytevector which is mostly empty.

[Procedure]make-request-failure
Returns an object which indicates that a global request failed.

[Procedure]request-failure? obj
Returns true if obj is a request-failure packet.

All requests to open a channel are represented by channel-open/* packets.

[Procedure]channel-open? obj
Returns true if obj is a channel-open packet.

[Procedure]channel-open-type pkt
A string representing the type of the channel-open request, e.g. "session".

[Procedure]channel-open-sender pkt
This is the ID for the sender side of the channel.

[Procedure]channel-open-initial-window-size pkt
This is the window size of the channel. The window size is used for flow-control and it
decreases when data is sent over the channel and increases when a channel-window-

adjust packet is sent. Each side of a channel has a window size.

[Procedure]channel-open-maximum-packet-size pkt
This is the maximum allowed packet size for data sent to a channel. It basically limits
the size of channel-data and channel-extended-data packets.

[Procedure]make-channel-open/direct-tcpip sender-id initial-window-size
connect-address connect-port originator-address originator-port

Constructs a request to open a new channel which is then connected to a TCP port.

[Procedure]channel-open/direct-tcpip? obj
Returns true if obj is a channel-open/direct-tcpip packet.

[Procedure]channel-open/direct-tcpip-connect-address pkt
This is the hostname or network address that the TCP connection should be connected
to.

[Procedure]channel-open/direct-tcpip-connect-port pkt
This is the port number that the TCP connection should be connected to.

[Procedure]channel-open/direct-tcpip-originator-address pkt
This is the network address of the machine that made the request.

[Procedure]channel-open/direct-tcpip-originator-port pkt
This is the port number on which the request was made. This is useful when a client
implements forwarding of client-local TCP ports.

Chapter 2: Library reference 61

[Procedure]make-channel-open/forwarded-tcpip sender-id initial-window-size
maximum-packet-size connected-address connected-port originator-address
originator-port

This request is used by the server to tell the client that a TCP connection has been
requested to a port for which the client sent a global-request/tcpip-forward re-
quest.

[Procedure]channel-open/forwarded-tcpip? obj
Returns true if obj is a channel-open/forwarded-tcpip packet.

[Procedure]channel-open/forwarded-tcpip-connected-address pkt
The address to which the TCP connection was made.

[Procedure]channel-open/forwarded-tcpip-connected-port pkt
The port to which the TCP connection was made.

[Procedure]channel-open/forwarded-tcpip-originator-address pkt
The remote address of the TCP connection.

[Procedure]channel-open/forwarded-tcpip-originator-port pkt
The remote port of the TCP connection.

[Procedure]make-channel-open/session sender-id initial-window-size
maximum-packet-size

Construct a request to open a session channel. This type of channel is used for inter-
active logins, remote command execution, etc. After the channel has been established
the client will send e.g. a channel-request/shell or a channel-request/exec re-
quest.

[Procedure]channel-open/session? obj
Returns true if obj is a channel-open/session packet.

[Procedure]make-channel-open/x11 type sender-id initial-window-size
maximum-packet-size originator-address originator-port

Constructs a message that opens an X11 channel. This message can be sent after
X11 forwarding has been requested.

[Procedure]channel-open/x11? obj
Returns true if obj is a channel-open/x11 packet.

[Procedure]channel-open/x11-originator-address pkt
The network address that originated the X11 connection.

[Procedure]channel-open/x11-originator-port pkt
The network port that originated the X11 connection.

[Procedure]channel-packet? obj
Returns true if obj is a channel-packet packet.

[Procedure]channel-packet-recipient pkt
This field is an integer that identifies the ID of the channel that should receive the
request.

Chapter 2: Library reference 62

[Procedure]make-channel-open-failure recipient reason-code description
language

Constructs a packet that represents a failure to open a channel. It is sent in response
to a channel-open/* request.

[Procedure]channel-open-failure? obj
Returns true if obj is a channel-open-failure packet.

[Procedure]channel-open-failure-reason-code pkt

SSH-OPEN-ADMINISTRATIVELY-PROHIBITED

SSH-OPEN-CONNECT-FAILED

SSH-OPEN-UNKNOWN-CHANNEL-TYPE

SSH-OPEN-RESOURCE-SHORTAGE

[Procedure]channel-open-failure-description pkt
This field is a human-readable reason for why the channel could not be opened.

[Procedure]channel-open-failure-language pkt
This field is most commonly unused and set to "".

[Procedure]make-channel-open-confirmation recipient sender
initial-window-size maximum-packet-size

Constructs a message that indicates a channel was successfully opened (identified
by recipient). The party that sends this message will include its own channel ID
(sender).

[Procedure]channel-open-confirmation? obj
Returns true if obj is a channel-open-confirmation packet.

[Procedure]channel-open-confirmation-sender pkt
This field contains the sender’s ID for this channel.

[Procedure]channel-open-confirmation-initial-window-size pkt
This is the sender’s initial window size. Analogous to the initial window size in a
channel-open/* request.

[Procedure]channel-open-confirmation-maximum-packet-size pkt
This is the sender’s maximum packet size. Analogous to the maximum packet size in
a channel-open/* request.

[Procedure]make-channel-window-adjust recipient amount
This constructs a packet that is used to increment the window size of channel recipient
by amount octets. It tells the remote part that the channel may receive additional
data. If the client has assigned to a channel a receive buffer of 4096 bytes and the
server sends 4096 bytes, the server will not be able to successfully send more data
until the client has processed some of the buffer. When there is more room in the
buffer the client can send a message of this type.

[Procedure]channel-window-adjust? obj
Returns true if obj is a channel-window-adjust packet.

Chapter 2: Library reference 63

[Procedure]channel-window-adjust-amount pkt
This field contains the number of bytes that will be added to the window size.

[Procedure]make-channel-data recipient value
This constructs a request that sends data over a channel.

[Procedure]channel-data? obj
Returns true if obj is a channel-data packet.

[Procedure]channel-data-value pkt
This field contains a bytevector with data being sent over the channel.

[Procedure]make-channel-extended-data recipient type value
This constructs a message that works just like channel-data, except it contains an
additional type field (explained below).

[Procedure]channel-extended-data? obj
Returns true if obj is a channel-extended-data packet.

[Procedure]channel-extended-data-type pkt
Data sent by a channel-data packet will normally be sent to a port connected with
standard output. A channel-extended-data field is used when the data destination
is a different port.

SSH-EXTENDED-DATA-STDERR

This constant specifies that the destination is the standard error port.

[Procedure]channel-extended-data-value pkt
This field contains a bytevector with the data sent over the channel, e.g. an error
message printed on the standard error port.

[Procedure]make-channel-eof recipient
This constructs a packet that signals the end-of-file condition on the channel identified
by the recipient ID.

[Procedure]channel-eof? obj
Returns true if obj is a channel-eof packet.

[Procedure]make-channel-close recipient
This constructs a message that is used when a channel is closed.

[Procedure]channel-close? obj
Returns true if obj is a channel-close packet.

[Procedure]make-channel-success recipient
This constructs a packet that indicates that the previous request was successful. These
packets are sent in response to requests where want-reply? is true.

[Procedure]channel-success? obj
Returns true if obj is a channel-success packet.

Chapter 2: Library reference 64

[Procedure]make-channel-failure recipient
This constructs a packet that indicates that the previous request was not successful.
These packets are sent in response to requests where want-reply? is true.

[Procedure]channel-failure? obj
Returns true if obj is a channel-failure packet.

[Procedure]channel-request? obj
Returns true if obj is a channel-request packet.

[Procedure]channel-request-type req
This field is a string that identifies the type of the request, e.g. "break" or "shell".

[Procedure]channel-request-want-reply? req
When this field is true the peer will respond with channel-success or channel-

failure. This field is not valid for all requests. Where it is not valid the constructor
will not include it as an argument.

[Procedure]make-channel-request/break recipient want-reply? length
This constructs a request that relays a “BREAK” signal on the channel. A “BREAK”
is a signalling mechanism used with serial consoles. This request is standardized by
RFC 4335.

[Procedure]channel-request/break? obj
Returns true if obj is a channel-request/break packet.

[Procedure]channel-request/break-length req
The length of the signal in milliseconds.

[Procedure]make-channel-request/env recipient want-reply? name value
Constructs a request that can be used before a shell or command has been started.
It is used to set an environment variable (of the same kind that SRFI-98 accesses).

[Procedure]channel-request/env? obj
Returns true if obj is a channel-request/env packet.

[Procedure]channel-request/env-name req
This is a string that identifies the name of the environment variable.

[Procedure]channel-request/env-value req
This is a bytevector that contains the value of the environment variable.

[Procedure]make-channel-request/exec recipient want-reply? command
Constructs a request that instructs the server to execute a command. The channel
identified by recipient will be connected to the standard input and output ports of
the program started by the server.

[Procedure]channel-request/exec? obj
Returns true if obj is a channel-request/exec packet.

[Procedure]channel-request/exec-command req
This field is a bytevector that contains the command that the server should try to
execute.

Chapter 2: Library reference 65

[Procedure]make-channel-request/exit-signal recipient name core-dumped?
message language

This constructs a packet which indicates that the program connected to the channel
identified by recipient has exited due to an operating system signal.

[Procedure]channel-request/exit-signal? obj
Returns true if obj is a channel-request/exit-signal packet.

[Procedure]channel-request/exit-signal-name req
This is a string that identifies the signal by name. For posix systems it is one of the
following: "ABRT", "ALRM", "FPE", "HUP", "ILL", "INT", "KILL", "PIPE", "QUIT",
"SEGV", "TERM", "USR1", "USR2". Other signal names may be used by following the
guidelines in section 6.10 of RFC 4254.

[Procedure]channel-request/exit-signal-core-dumped? req
This field is true when the operating system saved a process image (“core dump”)
when it sent the signal.

[Procedure]channel-request/exit-signal-message req
This may be a string that explains the signal.

[Procedure]channel-request/exit-signal-language req
This string may identify the language used in channel-request/exit-signal-

message.

[Procedure]make-channel-request/exit-status recipient value
This constructs a packet which indicates that the program connected to the channel
identified by recipient has exited voluntarily.

[Procedure]channel-request/exit-status? obj
Returns true if obj is a channel-request/exit-status packet.

[Procedure]channel-request/exit-status-value req
This is an integer that identifies the exit status of the program. It is the same kind
of number used by the the Scheme procedure exit.

[Procedure]make-channel-request/pty-req recipient want-reply? term columns
rows width height modes

Constructs a request that instructs the server to allocate a pseudo-terminal (PTY)
for the channel identified by recipient. A PTY is needed for interactive programs,
such as shells and Emacs.

[Procedure]channel-request/pty-req? obj
Returns true if obj is a channel-request/pty-req packet.

[Procedure]channel-request/pty-req-term req
This is a string that identifies the type of terminal that this PTY will be connected to.
If the terminal is compatible with the DEC VT100 the value would be "vt100". This
value is also the environment variable TERM. The set of supported terminal types
depends on the server. Typically the software running on an SSH server uses the
“terminfo” database.

Chapter 2: Library reference 66

[Procedure]channel-request/pty-req-columns req
This field contains the number of columns the terminal supports, e.g. 80. The
channel-request/window-change request can be used to update this value if the
terminal supports resizing.

[Procedure]channel-request/pty-req-rows req
This field contains the number of rows the terminal supports, e.g. 24.

[Procedure]channel-request/pty-req-width req
This field specifies the width of the terminal in pixels.

[Procedure]channel-request/pty-req-height req
This field specifies the height of the terminal in pixels.

[Procedure]channel-request/pty-req-modes req
This is a bytevector that encodes POSIX terminal modes. Unlike the size of the
terminal, it is not possible to change the modes after the PTY has been created. The
client should emulate a terminal set to “raw” mode and send a correct list of terminal
modes. The server will then cooperate to handle the rest. This means that, unlike
with telnet, the client will generally not do local “canonical” terminal processing.

[Procedure]bytevector->terminal-modes bv
Decodes the modes from a channel-request/pty-req. The return value is an asso-
ciation list.

[Procedure]terminal-modes->bytevector modes
The inverse of bytevector->terminal-modes. All modes specified by RFC 4254 can
be encoded.

(import (weinholt net ssh connection))

(terminal-modes->bytevector ’((VINTR . 3) (VERASE . 127)))

⇒ #vu8(1 0 0 0 3 3 0 0 0 127 0)

[Procedure]make-channel-request/shell recipient want-reply?
Constructs a request that starts a login shell on the channel identified by recipient.
Normally a PTY must first have been connected to the channel.

[Procedure]channel-request/shell? obj
Returns true if obj is a channel-request/shell packet.

[Procedure]make-channel-request/signal recipient name
Construct a packet that sends a signal to the program connected to the channel
identified by recipient.

[Procedure]channel-request/signal? obj
Returns true if obj is a channel-request/signal packet.

[Procedure]channel-request/signal-name req
This field contains a signal name of the same type as that used by channel-

request/exit-signal.

Chapter 2: Library reference 67

[Procedure]make-channel-request/subsystem recipient want-reply? name
Constructs a request that a subsystem should be connected to the channel identified
by recipient.

[Procedure]channel-request/subsystem? obj
Returns true if obj is a channel-request/subsystem packet.

[Procedure]channel-request/subsystem-name req
This field identifies the subsystem being requested, e.g. "sftp".

[Procedure]make-channel-request/window-change recipient columns rows width
height

Construct a message that tells the server that the terminal window associated
with a channel has been resized. The channel should have a PTY (see
channel-request/pty-req).

[Procedure]channel-request/window-change? obj
Returns true if obj is a channel-request/window-change packet.

[Procedure]channel-request/window-change-columns req
Contains the new character cell width of the terminal window.

[Procedure]channel-request/window-change-rows req
Contains the new character cell height of the terminal window.

[Procedure]channel-request/window-change-width req
Contains the new pixel width of the terminal window.

[Procedure]channel-request/window-change-height req
Contains the new pixel height of the terminal window.

[Procedure]make-channel-request/x11-req recipient want-reply?
single-connection? protocol cookie screen

Constructs an X11 (X Window System) forwarding request.

[Procedure]channel-request/x11-req? obj
Returns true if obj is a channel-request/x11-req packet.

[Procedure]channel-request/x11-req-single-connection? req
If this field is true when only one X11 connection should be forwarded.

[Procedure]channel-request/x11-req-protocol req
This field identifies an X11 authentication protocol. The most common value is "MIT-
MAGIC-COOKIE-1".

[Procedure]channel-request/x11-req-cookie req
This is a “magic cookie” encoded as a hexadecimal string. It is used with "MIT-MAGIC-

COOKIE-1". It is recommended by RFC 4254 that this cookie should be different
from the actual cookie used by the X11 server. When receiving a channel-open/x11

request the cookie can be intercepted, verified and replaced with the real one.

Chapter 2: Library reference 68

[Procedure]channel-request/x11-req-screen req
An X11 display can have, in X jargon, multiple screens. Normally this field would be
0.

[Procedure]make-channel-request/xon-xoff recipient client-can-do?
Constructs a message that tells the client when it can do local processing of terminal
flow control (C-s and C-q).

[Procedure]channel-request/xon-xoff? obj
Returns true if obj is a channel-request/xon-xoff packet.

[Procedure]channel-request/xon-xoff-client-can-do? req
This flag is true if the client is allowed to do local processing of terminal flow control.
If the flag is false then flow control is done on the server.

Version history:

• (1 0) – Initial version.

2.5.4.2 Secure Shell Transport Layer Protocol

The (weinholt net ssh transport) library implements record types, parsers and format-
ters for the transport layer packets in SSH.

See RFC 4253 for a description of this protocol.

[Procedure]register-transport registrar
Registers the packet types for the transport layer so that they may be received and
sent. A registrar may be obtained using ssh-conn-registrar.

[Procedure]make-disconnect code message language
Constructs a packet that closes the SSH connection. After sending or receiving this
message the connection should be closed with close-ssh. The ssh-error proce-
dure may be more convenient than manually constructing and sending a disconnect

packet.

[Procedure]disconnect? obj
Returns #t if obj is a disconnect packet.

[Procedure]disconnect-code pkt
This field is an integer that represents the cause of the disconnect. The reason could
be one of these (exported) constants:

Chapter 2: Library reference 69

SSH-DISCONNECT-HOST-NOT-ALLOWED-TO-CONNECT

SSH-DISCONNECT-PROTOCOL-ERROR

SSH-DISCONNECT-KEY-EXCHANGE-FAILED

SSH-DISCONNECT-RESERVED

SSH-DISCONNECT-MAC-ERROR

SSH-DISCONNECT-COMPRESSION-ERROR

SSH-DISCONNECT-SERVICE-NOT-AVAILABLE

SSH-DISCONNECT-PROTOCOL-VERSION-NOT-SUPPORTED

SSH-DISCONNECT-HOST-KEY-NOT-VERIFIABLE

SSH-DISCONNECT-CONNECTION-LOST

SSH-DISCONNECT-BY-APPLICATION

SSH-DISCONNECT-TOO-MANY-CONNECTIONS

SSH-DISCONNECT-AUTH-CANCELLED-BY-USER

SSH-DISCONNECT-NO-MORE-AUTH-METHODS-AVAILABLE

SSH-DISCONNECT-ILLEGAL-USER-NAME

[Procedure]disconnect-message pkt
This is a human-readable explanation for the disconnect.

[Procedure]disconnect-language pkt
Most commonly unused, "".

[Procedure]make-ignore data
Construct a new ignore packet using the bytevector data as the payload. These
packets are ignored by receivers but can be used to make traffic analysis more difficult.

[Procedure]ignore? obj
Returns #t if obj is an ignore packet.

[Procedure]make-unimplemented sequence-number
This constructs a message that should be sent when a received packet type is not
implemented.

[Procedure]unimplemented? obj
Returns #t if obj is an unimplemented packet.

[Procedure]unimplemented-sequence-number pkt
Each packet sent over an SSH connection is given an implicit sequence number. This
field exactly identifies one SSH packet.

[Procedure]make-debug always-display? message language
Constructs a debug packet. It contains a message that a client or server may optionally
display to the user.

[Procedure]debug? obj
Returns #t if obj is a debug packet.

[Procedure]debug-always-display? pkt
If this field is true then the message should be displayed.

Chapter 2: Library reference 70

[Procedure]debug-message pkt
This is a string containing the debugging message. If it is displayed to the user it
should first be filtered.

[Procedure]debug-language pkt
Most commonly unused, "".

[Procedure]make-service-request name
This constructs a service request packet. The first service requested is normally
"ssh-userauth". See Section 2.5.4.3 [net ssh userauth], page 72.

[Procedure]service-request? obj
Returns #t if obj is a service-request packet.

[Procedure]service-request-name pkt
This is the name of the service being requested, e.g. "ssh-userauth".

[Procedure]make-service-accept name
Constructs a request which indicates that access to a requested service was granted.

[Procedure]service-accept? obj
Returns #t if obj is a service-accept packet.

[Procedure]service-accept-name pkt
This field contains the name of the service to which access was granted.

[Procedure]make-kexinit cookie kex-algorithms server-host-key-algorithms
encryption-algorithms-client-to-server encryption-algorithms-server-to-client
mac-algorithms-client-to-server mac-algorithms-server-to-client
compression-algorithms-client-to-server compression-algorithms-server-to-client
languages-client-to-server languages-server-to-client first-kex-packet-follows?
reserved

Constructs a kexinit packet, which is used as part of the key exchange algorithm.
The arguments are explained below. You probably want to use build-kexinit-

packet instead of this procedure.

[Procedure]kexinit? obj
Returns #t if obj is a kexinit packet.

[Procedure]kexinit-cookie pkt
This field is a random bytevector. It is used in the key exchange to make things more
difficult for an attacker.

[Procedure]kexinit-kex-algorithms pkt
A list of the supported key exchange algorithms (mostly variations on Diffie-Hellman).

[Procedure]kexinit-server-host-key-algorithms pkt
A list of the supported host key algorithms.

[Procedure]kexinit-encryption-algorithms-client-to-server pkt
A list of the supported encryption algorithms for packets sent from the client to the
server.

Chapter 2: Library reference 71

[Procedure]kexinit-encryption-algorithms-server-to-client pkt
A list of the supported encryption algorithms for packets sent from the server to the
client.

[Procedure]kexinit-mac-algorithms-client-to-server pkt
A list of the supported Message Authentication Code (MAC) algorithms for packets
sent from the client to the server.

[Procedure]kexinit-mac-algorithms-server-to-client pkt
A list of the supported Message Authentication Code (MAC) algorithms for packets
sent from the server to the client.

[Procedure]kexinit-compression-algorithms-client-to-server pkt
A list of the supported compression algorithms for packets sent from the client to
the server. The algorithm "none" is currently the only implemented compression
algorithm.

[Procedure]kexinit-compression-algorithms-server-to-client pkt
A list of the supported compression algorithms for packets sent from the server to
the client. The algorithm "none" is currently the only implemented compression
algorithm.

[Procedure]kexinit-languages-client-to-server pkt
Normally never used. Set to the empty list.

[Procedure]kexinit-languages-server-to-client pkt
Normally never used. Set to the empty list.

[Procedure]kexinit-first-kex-packet-follows? pkt
If this field is true then the server and client will try to cooperate in order to make
the key exchange run faster over connections with high latency. This optimization
only works when the server and client both prefer the same algorithms.

[Procedure]kexinit-reserved pkt
This field must be zero.

[Procedure]make-newkeys
Constructs a new newkeys packet. This message is used as part of key exchange to
notify the remote side that new encryption keys are being used.

[Procedure]newkeys? obj
Returns #t if obj is a newkeys packet.

Version history:

• (1 0) – Initial version.

Chapter 2: Library reference 72

2.5.4.3 Secure Shell Authentication Protocol

The (weinholt net ssh userauth) library implements record types, parsers and formatters
for the authentication protocol packets in SSH.

See RFC 4252 for a more detailed description of this protocol. In this protocol the client
sends packets of type userauth-request. The type names that start with userauth-

request/ are sub-types that contain user credentials. All other packet types documented
here are sent by the server.

All user authentication requests contain a user name, a service name and a method
name. The service name most commonly used is "ssh-connection", which requests access
to the connection protocol. See Section 2.5.4.1 [net ssh connection], page 58.

[Procedure]register-userauth registrar
Registers the packet types for the authentication protocol so that they may be received
and sent. A registrar may be obtained using ssh-conn-registrar.

[Procedure]register-userauth-password registrar
Registers the packet types for the password authentication protocol. This is a sup-
plement to register-userauth.

[Procedure]register-userauth-public-key registrar
Registers the packet types for the public key authentication protocol. This is a sup-
plement to register-userauth.

[Procedure]deregister-userauth registrar
Deregisters all authentication protocol packet types.

[Procedure]make-userauth-request username service method
Constructs a new user authentication request. This particular procedure is only good
for constructing requests that use the "none" method. When such a request is sent
to the server it will respond with a list of available authentication methods. To make
a proper request use one of the make-userauth-request/* procedures below. Those
procedures automatically include the correct method in the request. The service is
normally "ssh-connection". See Section 2.5.4.1 [net ssh connection], page 58.

[Procedure]userauth-request? obj
Returns true if obj is a userauth-request packet. This includes userauth-

request/password packets, and so on.

[Procedure]userauth-request-username request
This returns the user name field of request.

[Procedure]userauth-request-service request
This returns the service name field of request.

[Procedure]userauth-request-method request
This returns the method name field of request. Examples include "none", "password"
and "publickey".

If the server does not like the credentials provided in a userauth-request it will send
a userauth-failure packet.

Chapter 2: Library reference 73

[Procedure]make-userauth-failure can-continue partial?
Constructs a message that indicates to the client that the user authentication request
was not successful.

[Procedure]userauth-failure? obj
Returns true if obj is a userauth-failure packet. These packets indicate the the
client was denied access to the requested service. The credentials might be incorrect
or the server might be requesting additional authentication requests (see below).

[Procedure]userauth-failure-can-continue failure
This returns a list of authentication methods that “can continue”, i.e. methods that
might be successful given that correct credentials are provided.

[Procedure]userauth-failure-partial? failure
This is a boolean that indicates partial success. The server might require multiple
successful authentication requests (see RFC 4252).

[Procedure]make-userauth-success
Constructs a packet that indicates to the client that the user authentication was
successful. The client can now use the requested service (e.g. the connection protocol).
This message has no fields.

[Procedure]userauth-success? obj
Returns true if obj is a userauth-success packet.

The server can send a banner before the user authenticates. The banner might often
contain a warning about unauthorized access.

[Procedure]make-userauth-banner message language
This constructs a textual message that the server can send to the client. The client
software can then display it to the user. This happens before user authentication is
attempted and often contains a warning about unauthorized accesss.

[Procedure]userauth-banner? obj
Returns true if obj is a userauth-banner packet.

[Procedure]userauth-banner-message banner
This field is a message that the client can show to the user.

[Procedure]userauth-banner-language banner
This field might indicate the language of the text in the banner, but is most commonly
empty and not used.

The client can try to authenticate with a password. Note that the unencrypted password
is seen by the server. It’s important to check hosts keys to make sure you’re connecting to
the right server.

[Procedure]make-userauth-request/password username service password
Constructs a user authentication request. This is a normal attempt to login with a
user name and password. There is an alternative protocol for these types of login
requests: the "keyboard-interactive" method (support is planned).

Chapter 2: Library reference 74

[Procedure]userauth-request/password? obj
Returns true if obj is a userauth-request/password packet.

[Procedure]userauth-request/password-value request
Returns the password field for this user authentication request.

The server can request that the client should change its password.

[Procedure]make-userauth-password-changereq prompt language
This constructs a password change request. Some servers might send this packet if
e.g. they use a password expiry system.

[Procedure]userauth-password-changereq? obj
Returns true if obj is a userauth-request/changereq packet.

[Procedure]userauth-password-changereq-prompt changereq
This is the message to show the user when prompting for the new password.

[Procedure]userauth-password-changereq-language changereq
This is the language used in the password change request prompt.

After having received a request to change its password a client may send a userauth-

request/password-change packet.

[Procedure]make-userauth-request/password-change username service old new
Constructs a request to authenticate the user and at the same time change the
user’s password. This message may be sent without having received a userauth-

request/changereq packet. Please see section 8 of RFC 4252 for the meaning of the
packet that the server will send in response to this packet.

[Procedure]userauth-request/password-change? obj
Returns true if obj is a userauth-request/password-change packet.

[Procedure]userauth-request/password-change-old request
This field contains the user’s current password.

[Procedure]userauth-request/password-change-new request
This field contains the user’s new password.

[Procedure]make-userauth-request/public-key-query username service key
Before performing a potentially expensive private key operation the client may ask
the server if a specific key might be used to authenticate.

[Procedure]userauth-request/public-key-query? obj
Returns true if obj is a userauth-request/public-key-query packet.

[Procedure]userauth-request/public-key-query-algorithm request
This field is automatically filled in by make-userauth-request/public-key-query

to contain the public key algorithm name of the key contained in the query.

[Procedure]userauth-request/public-key-query-key request
This field contains an SSH public key.

Chapter 2: Library reference 75

[Procedure]make-userauth-public-key-ok algorithm key
The server sends userauth-public-key-ok to indicate that the user may try to
authenticate with the given key.

[Procedure]userauth-public-key-ok? obj
Returns true if obj is a userauth-public-key-ok packet.

[Procedure]userauth-public-key-ok-algorithm request
This is a copy of the algorithm name contained in the userauth-request/public-

key-query packet.

[Procedure]userauth-public-key-ok-key request
This is a copy of the public key contained in the userauth-request/public-key-

query packet.

[Procedure]make-userauth-request/public-key username service public-key
This procedure creates an unsigned request to authenticate with public key cryptog-
raphy. The client may try to authenticate itself by sending a signed request to the
server. The server will have a copy of the public key on file, e.g. stored in the user’s
authorized_keys file. By using the public key it can confirm that the client is pos-
session of the corresponding private key. The packet returned by this procedure may
be signed with sign-userauth-request/public-key.

[Procedure]userauth-request/public-key? obj
Returns true if obj is a userauth-request/public-key packet.

[Procedure]userauth-request/public-key-algorithm request
This field indicates the public key algorithm name of the public key in the request.
It is automatically filled in when the request is constructed.

[Procedure]userauth-request/public-key-key request
This field contains an SSH public key object. See Section 2.3.17 [crypto ssh-public-
key], page 40.

[Procedure]sign-userauth-request/public-key request session-id private-key
This generates a signed userauth-request/public-key packet. It needs an un-
signed request, which may be created with make-userauth-request/public-key.
The session-id can be recovered with ssh-conn-session-id. The private-key must
be a private DSA or ECDSA key (support for RSA signing is planned). The signed
request uses the SSH connection’s session ID and can therefore not be used with any
other connection.

Version history:

• (1 0) – Initial version.

2.5.5 Basic TCP client connections

The (weinholt net tcp) provides a simple TCP client. This library needs implementation-
specific code, so the author is not eager to provide more than the bare minimum.

This library should work with Ikarus Scheme, GNU Guile, Larceny (not tested with
Petit Larceny and Common Larceny), Mosh Scheme, Petite Chez Scheme (as long as the

Chapter 2: Library reference 76

nc command is installed), Vicare Scheme, and Ypsilon Scheme. Once upon a time it also
worked with PLT Scheme, but it has not been tested with Racket.

[Procedure]tcp-connect hostname portname
Initiates a TCP connection to the given hostname and portname (both of which are
strings).

Returns an input-port and an output-port. They are not guaranteed to be distinct.

Version history:

• (0 0) – Initial version.

2.5.6 Transport Layer Security (simple interface)

The (weinholt net tls simple) library provides custom binary ports that implement the
Transport Layer Security (TLS) protocol used by e.g. https. After starting TLS you can
use the new ports as easily as if they were unencrypted. TLS encrypts the traffic and lets
you verify the remote server’s identity.

This library currently only provides a TLS client. Both TLS 1.0 and TLS 1.1 are
supported. The RSA, DHE-RSA (Ephemeral Diffie-Hellman) and DHE-DSA key exchange
algorithms are supported, as well as AES, ARCFOUR and 3DES ciphers.

This whole thing is kind of experimental and I’d appreciate feedback.

[Procedure]tls-connect hostname portname [client-certificates]
Initiates a TCP connection to the given hostname and portname (which are strings)
and negotiates a TLS connection. Can hang forever.

Pay no attention to the optional client-certificates argument. It is not yet imple-
mented.

This procedure returns three values: a binary input port, a binary output port,
and a TLS connection object. The last value comes from the not-yet-documented
(weinholt net tls) library. It is intended to be used to access the server’s certificate
chain, which can be verified using the not-yet-documented (weinholt crypto x509)

library.

[Procedure]start-tls hostname portname binary-input-port binary-output-port
[client-certificates]

Negotiates TLS on two already opened ports. Same return values as tls-connect.
This procedure can be used for protocols where the communication at first is in
plaintext and then switches over to encrypted (i.e. STARTTLS). Some such protocols
are SMTP, LDAP and XMPP.

Version history:

• (1 0) – Initial version. Very slow indeed, but it works.

2.6 Binary structure utilities

Chapter 2: Library reference 77

2.6.1 Binary structure packing and unpacking

With (weinholt struct pack) you can easily access fields in a bytevector and make new
bytevectors from fields. The library defines syntax that is similar to Python’s struct module
or Perl’s pack/unpack functions.

The exported bindings are actually syntax, but they can be used as normal procedures,
thanks to the use of make-variable-transformer. The syntax transformers basically per-
form inlining.

This library uses format strings which specify binary fields. The format strings are read
left-to-right and their syntax is:

• c – s8, a signed byte.

• C – u8, an unsigned byte.

• s – s16, a signed 16-bit word.

• S – u16, an unsigned 16-bit word.

• l – s32, a signed 32-bit word.

• L – u32, an unsigned 32-bit word.

• q – s64, a signed 64-bit word.

• Q – u64, an unsigned 64-bit word.

• f – an IEEE-754 single-precision number.

• d – an IEEE-754 double-precision number.

• x – one byte of padding (zero).

• a – enable automatic natural alignment (default). Padding is inserted to align fields to
their natural alignment, i.e. a 32-bit field is aligned to a 4 byte offset.

• u – disable automatic natural alignment.

• ! and > – the following fields will have big-endian (network) byte order.

• < – the following fields will have little-endian byte order.

• = – the following fields will have native endianness.

• whitespace – ignored.

• decimals – repeat the following format character N times.

[Procedure]unpack fmt bytevector [offset]
Returns as many values as there are fields in the fmt string. The values are fetched
from the bytevector starting at the offset (by default 0). For example, if the format
string is "C", this translates into a bytevector-u8-ref call.

(import (weinholt struct pack))

(unpack "!xd" (pack "!xd" 3.14))

⇒ 3.14

(number->string (unpack "!L" #vu8(#x00 #xFB #x42 #xE3)) 16)

⇒ "FB42E3"

(unpack "!2CS" #vu8(1 2 0 3))

⇒ 1

⇒ 2

⇒ 3

Chapter 2: Library reference 78

[Procedure]pack fmt values ...
Returns a new bytevector containing the values encoded as per the fmt string.

(pack "!CCS" 1 2 3)

⇒ #vu8(1 2 0 3)

(pack "!CSC" 1 2 3)

⇒ #vu8(1 0 0 2 3)

(pack "!SS" (question-qtype x) (question-qclass x))

7→
(let ((bv (make-bytevector 4)))

(pack! "!SS" bv 0 (question-qtype x) (question-qclass x))

bv)

7→
(let ((bv (make-bytevector 4)))

(let ((bv bv) (off 0))

(bytevector-u16-set! bv 0 (question-qtype x)

(endianness big))

(bytevector-u16-set! bv 2 (question-qclass x)

(endianness big))

(values))

bv)

[Procedure]pack! fmt bytevector offset values ...
The same as pack, except it modifies the given bytevector and returns no values.

[Procedure]get-unpack binary-input-port fmt
Reads (format-size fmt) bytes from the binary-input-port and unpacks them ac-
cording to the format string. Returns the same values as unpack would.

(get-unpack port "4xCCxCC7x")

7→
(let ((bv (get-bytevector-n port 16))

(off 0))

(values (bytevector-u8-ref bv 4) (bytevector-u8-ref bv 5)

(bytevector-u8-ref bv 7) (bytevector-u8-ref bv 8)))

[Procedure]format-size fmt
Returns how many bytes the fields in the format string would use if packed together,
including any padding.

(format-size "!xQ")

⇒ 16

(format-size "!uxQ")

⇒ 9

Version history:

• (1 0) – Initial version.

• (1 1) – unpack can now be used as a procedure.

• (1 2) – Added the format characters a and u.

Chapter 2: Library reference 79

• (1 3) – Added get-unpack. Removed the unnecessary size check in unpack.

• (1 4) – pack, get-unpack and format-size are now syntax. The unpack syntax can
handle non-constant offsets. Removed another unnecessary size check in pack!. Added
documentation and examples.

2.7 Textual structure utilities

2.7.1 Base64 encoding and decoding

The (weinholt text base64) library provides procedures for dealing with the standard
Base64 encoding from RFC 4648 and some variations thereof. The Base64 encoding can be
used to represent arbitrary bytevectors purely in printable ASCII.

One variation of Base64 is in the alphabet used. The standard encoding uses an alphabet
that ends with #\+ and #\/, but these characters are reserved in some applications. One
such application is HTTP URLs, so there is a special encoding called base64url that simply
uses a different alphabet.

The line length can also vary. Some applications will need Base64 encoded strings that
have no line endings at all, while other applications have 64 or 76 characters per line. For
these uses the line length must be a multiple of four characters. Sometimes there is not
enough input to get a multiple of four, but then the padding character #\= is used. Some
applications don’t use padding.

Some applications have their own “Base64” encodings that encode bits in a different
order. Such will be deemed magic and shall not work with this library.

[Procedure]base64-encode bv [start end line-length no-padding alphabet port]
Encodes the bytevector bv in Base64 encoding. Optionally a range of bytes can be
specified with start and end.

If a maximum line length is required, set line-length to an integer multiple of four (the
default is #f). To omit padding at the end of the data, set no-padding or a non-false
value. The alphabet is a string of length 64 (by default base64-alphabet).

The port is either a textual output port or #f, in which case this procedure returns
a string.

[Procedure]base64-decode str [alphabet port]
Decodes the Base64 data in str. The string has to contain pure Base64 data, including
padding, and no whitespace or other extra characters. The output is written to the
binary output port. Returns a bytevector if port is #f.

[Procedure]put-delimited-base64 port type bv [line-length]
Write the Base64 encoding of bv to the port. The output is delimited by BEGIN/END
lines that include the type.

(import (weinholt text base64))

(put-delimited-base64 (current-output-port) "EXAMPLE"

(string->utf8 "POKEY THE PENGUIN"))

a -----BEGIN EXAMPLE-----

a UE9LRVkgVEhFIFBFTkdVSU4=

a -----END EXAMPLE-----

Chapter 2: Library reference 80

[Procedure]get-delimited-base64 port
Reads a delimited Base64 encoded bytevector and returns two values: type (a string)
and data (a bytevector). The data value is the end-of-file object if port-eof? would
return #t.

Note: This procedure ignores MIME headers. Some delimited Base64 formats have
headers on the line after BEGIN, followed by an empty line.

Note: This procedure ignores the Radix-64 checksum. The Radix-64 format (RFC
4880) is based on Base64, but appends a CRC-24 (prefixed by #\=) at the end of the
data.

The rationale for ignoring headers and checksums is that it follows the Principle of
Robustness: “Be conservative in what you send; be liberal in what you accept from
others.” Lines before the BEGIN line are also ignored, because some applications
(like OpenSSL) like to prepend a human readable version of the data.

You should probably use special parsers if you are reading data with headers or
checksums. For some applications, e.g. MIME, you might need a Base64 decoder that
also ignores characters outside the alphabet.

(get-delimited-base64

(open-string-input-port

"-----BEGIN EXAMPLE-----\n\

AAECAwQFBg==\n\

-----END EXAMPLE-----\n"))

⇒ "EXAMPLE"

⇒ #vu8(0 1 2 3 4 5 6)

[Constant]base64-alphabet
The alphabet used by the standard Base64 encoding. The alphabet is #\A–#\Z, #\a–
#\z, #\0–#\9, #\+, #\/.

[Constant]base64url-alphabet
The alphabet used by the base64url encoding. The alphabet is #\A–#\Z, #\a–#\z,
#\0–#\9, #\-, #_.

Version history:

• (1 0) – Initial version.

2.7.2 Internet address parsing and formatting

The (weinholt text internet) library helps you correctly parse and format IPv4 and
IPv6 addresses. This was a relatively trivial task when the Internet used the 32-bit IPv4
addresses. But when the newer 128-bit IPv6 addresses are represented as strings they can
be compressed (meaning that sequences of zeroes may be omitted). An IPv6 address can
actually be written in a great number of ways, and this has resulted in a recommended
textual representation (RFC 5952).

The IPv6 code does not yet handle embedded IPv4 addresses.

[Procedure]ipv4->string bytevector
The IPv4 address in bytevector is converted to the canonical string representation.

Chapter 2: Library reference 81

[Procedure]string->ipv4 string
The textually represented IPv4 address in string is converted to its bytevector repre-
sentation.

If the string does not represent an IPv4 address, #f is returned.

Note that this only handles the normal dotted-decimal notation. Some libraries, e.g.
the standard C library, provide a function that parses addresses in octal, hex, and
even handles some octets being missing. This library does none of that. Up to two
leading zeroes may be used, though:

(import (weinholt text internet))

(ipv4->string (string->ipv4 "192.000.002.000"))

⇒ "192.0.2.0"

[Procedure]ipv6->string bytevector
The IPv6 address in bytevector is converted to the string representation recommended
by RFC 5952.

(ipv6->string (string->ipv6 "2001:db8:0:0:0:0:0:1"))

⇒ "2001:db8::1"

[Procedure]string->ipv6 string
The textually represented IPv6 address in string is converted to its bytevector repre-
sentation. The input may be in any valid format.

If the string does not represent an IPv6 address, #f is returned.

(string->ipv6 "2001:db8:0:0:0:0:1")

⇒ #f

(string->ipv6 "2001:db8::1")

⇒ #vu8(32 1 13 184 0 0 0 0 0 0 0 0 0 0 0 1)

Version history:

• (1 0) – Initial version.

2.8 Data types and utilities

2.8.1 Bytevector utilities

The (weinholt bytevectors) library contains utilities for working with R6RS bytevectors.
For constructing and deconstructing bytevectors, see Section 2.6.1 [struct pack], page 77.

[Procedure]bytevector-append [bytevector ...]
Appends the given bytevectors.

[Procedure]bytevector-concatenate list
list is a list of bytevectors. The bytevectors are appended.

[Procedure]subbytevector bytevector start [end]
Analogous to substring. Returns a new bytevector containing the bytes of bytevector
from index start to end (exclusive).

Chapter 2: Library reference 82

[Procedure]bytevector-u8-index bytevector byte [start end]
Searches bytevector for byte, from left to right. The optional arguments start and
end give the range to search. By default the whole bytevector is searched. Returns
#f is no match is found.

[Procedure]bytevector-u8-index-right bytevector byte [start end]
Analogous to bytevector-u8-index-right, except this procedure searches right-to-
left.

[Procedure]bytevector->uint bytevector
bytevector is interpreted as an unsigned integer in big endian byte order and is con-
verted to an integer. The empty bytevector is treated as zero.

[Procedure]uint->bytevector integer
integer is converted to an unsigned integer in big endian byte order. The returned
bytevector has the minimum possible length. Zero is converted to the empty bytevec-
tor.

(import (weinholt bytevectors))

(uint->bytevector 256)

⇒ #vu8(1 0)

(uint->bytevector 255)

⇒ #vu8(255)

[Procedure]bytevector=?/constant-time bytevector1 bytevector2
True if bytevector1 and bytevector2 are of equal length and have the same contents.

This is a drop-in replacement for bytevector=? that does not leak information about
the outcome of the comparison by how much time the comparison takes to perform. It
works by accumulating the differences between the bytevectors. This kind of operation
is most often needed when comparing fixed-length message digests, so the length
comparison is done in the obvious (fast) way.

Version history:

• (1 0) – Initial version.

Chapter 3: Demo programs 83

3 Demo programs

The programs directory contains small demonstration of the libraries. These scripts are
implemented in the way recommended by R6RS non-normative appendix D.

If you’re packaging these libraries then I would recommend against installing the demos
in the default program search path.

3.1 checksig – verifies OpenPGP signature files

This program takes a detached ascii armored OpenPGP signature, a file to check against,
and a GPG keyring. It then verifies the signature. As a curiosity it also prints OpenSSH-
style random art for the key that made the signature.

3.2 checksum – computes CRCs and message digests

Compute the hash or CRC of a file. Give it an algorithm and filenames and off it goes. It
also demonstrates the superior slowness of the hashing libraries.

3.3 fcdisasm – full-color disassembler

The Full-Color Disassembler, which disassembles machine code and colors the bytes in the
hexdump. This makes it easy to see how many bytes all the different parts of an instruction
uses.

Originally made for the x86 disassembler, so the hexdumps for other architectures might
not be as nice. It now also supports HC12 and MIPS. It handles ELF files and assumes
anything else is raw x86.

3.4 honingsburk – simple Secure Shell honey pot

This demonstrates the server part of the SSH library. It starts up a dummy SSH server
that accepts logins with the username root and the password toor. The server does not
create a real PTY and the client does not gain access to the computer running the server.
It presents a command line where all commands return an error. It uses a few non-standard
procedures from Ikarus.

3.5 meircbot – the minimum-effort irc bot

The program file contains the configuration. It doesn’t do anything other than joining
channels and being rude in private messages. Shows how the (weinholt net irc) library
can be used. It requires the (xitomatl AS-match) library.

It also uses demonstrates how to use FiSH, OTR and the simple TLS library.

3.6 secsh-client – manually operated Secure Shell client

Most SSH clients try to provide a nice user experience. This one is instead a command-line
based manually operated client. After establishing the initial connection you can use a few
simplistic commands to login, establish a session channel, read and write channel data. You
can also enable debugging if you’d like to see a packet trace. This session log shows how to
connect to a honingsburk running on TCP port 2222:

Chapter 3: Demo programs 84

Industria SSH demo client.

Connecting to localhost port 2222...

Running key exchange...

a6:4b:7e:05:38:03:01:29:07:0c:58:a4:fe:c1:d8:02

+---[ECDSA 521]---+

|*++o.. |

|ooo . |

|Eo . . |

|o + + . |

| + + oS. |

| o . o . |

| . o . |

| o .. |

| o. |

+-----------------+

localhost ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1[...]

Please verify the above key.

SSH session established.

Type help for a list of commands.

localhost=> u "root"

Your request to use ssh-userauth was accepted.

You may try these authentication methods: (password)

localhost=> p "toor"

You’ve succesfully authenticated.

You now have access to the SSH connection protocol.

localhost=> s

New session opened.

Receive side parameters:

ID: 0 window size: 4096 maximum packet size: 32768

Send side parameters:

ID: 0 window size: 32768 maximum packet size: 32768

localhost=> t 0

localhost=> r

Linux darkstar 2.6.35.8 #1 Sat Oct 30 10:43:19 CEST 2010 i686

Welcome to your new account!

No mail.

localhost=> r

darkstar:~#

localhost=>

Chapter 3: Demo programs 85

3.7 sunzip – zip archive extractor

A simple program to extract (or list the contents of) zip archives. Can handle deflated files.

3.8 szip – zip archive creator

Creates zip files, but does not actually compress anything as of yet.

3.9 tarinfo – tarball information lister

Lists the contents of .tar and .tar.gz files. Sometimes these files contain more information
than you think.

3.10 tls-client – trivial HTTPS client

Demonstrates the simple TLS library. It connects to an HTTPS server, does a GET /
request and displays the reply.

Index 86

Index

-
->elliptic-point . 30

3
3DES . 25

A
Adler-32 . 12
aes-cbc-decrypt! . 21
aes-cbc-encrypt! . 21
aes-ctr! . 21
aes-decrypt! . 21
aes-encrypt! . 20
append-central-directory 16
append-file . 16
append-port . 16
arcfour! . 22
arcfour-discard! . 22
ASCII Armor . 79

B
base64-alphabet . 80
base64-decode . 79
base64-encode . 79
base64url-alphabet . 80
blowfish-cbc-decrypt! . 23
blowfish-cbc-encrypt! . 23
blowfish-decrypt! . 23
blowfish-encrypt! . 22
build-kexinit-packet . 57
bytevector->elliptic-point 30
bytevector->terminal-modes 66
bytevector->uint . 82
bytevector-append . 81
bytevector-concatenate . 81
bytevector-randomize! . 32
bytevector-u8-index . 82
bytevector-u8-index-right 82
bytevector=?/constant-time 82

C
CA certificate . 42
CA-file . 42
CA-path . 42
CA-procedure . 42
central-directory->file-record 16
central-directory-comment 19
central-directory-compressed-size 18
central-directory-compression-method 18
central-directory-crc-32 18

central-directory-date . 18
central-directory-disk-number-start 18
central-directory-external-attributes 19
central-directory-extra . 19
central-directory-filename 19
central-directory-flags . 18
central-directory-internal-attributes 18
central-directory-minimum-version 18
central-directory-os-made-by 18
central-directory-uncompressed-size 18
central-directory-version-made-by 18
central-directory? . 18
certificate-from-bytevector 41
certificate-key-usage . 42
certificate-public-key . 41
certificate-tbs-data . 43
certificate? . 41
channel-close? . 63
channel-data-value . 63
channel-data? . 63
channel-eof? . 63
channel-extended-data-type 63
channel-extended-data-value 63
channel-extended-data? . 63
channel-failure? . 64
channel-open-confirmation-initial-window-

size . 62
channel-open-confirmation-maximum-packet-

size . 62
channel-open-confirmation-sender 62
channel-open-confirmation? 62
channel-open-failure-description 62
channel-open-failure-language 62
channel-open-failure-reason-code 62
channel-open-failure? . 62
channel-open-initial-window-size 60
channel-open-maximum-packet-size 60
channel-open-sender . 60
channel-open-type . 60
channel-open/direct-tcpip-connect-address

. 60
channel-open/direct-tcpip-connect-port . . . 60
channel-open/direct-tcpip-originator-

address . 60
channel-open/direct-tcpip-originator-port

. 60
channel-open/direct-tcpip? 60
channel-open/forwarded-tcpip-connected-

address . 61
channel-open/forwarded-tcpip-connected-port

. 61
channel-open/forwarded-tcpip-originator-

address . 61
channel-open/forwarded-tcpip-originator-

port . 61

Index 87

channel-open/forwarded-tcpip? 61
channel-open/session? . 61
channel-open/x11-originator-address 61
channel-open/x11-originator-port 61
channel-open/x11? . 61
channel-open? . 60
channel-packet-recipient 61
channel-packet? . 61
channel-request-type . 64
channel-request-want-reply? 64
channel-request/break-length 64
channel-request/break? . 64
channel-request/env-name 64
channel-request/env-value 64
channel-request/env? . 64
channel-request/exec-command 64
channel-request/exec? . 64
channel-request/exit-signal-core-dumped?

. 65
channel-request/exit-signal-language 65
channel-request/exit-signal-message 65
channel-request/exit-signal-name 65
channel-request/exit-signal? 65
channel-request/exit-status-value 65
channel-request/exit-status? 65
channel-request/pty-req-columns 66
channel-request/pty-req-height 66
channel-request/pty-req-modes 66
channel-request/pty-req-rows 66
channel-request/pty-req-term 65
channel-request/pty-req-width 66
channel-request/pty-req? 65
channel-request/shell? . 66
channel-request/signal-name 66
channel-request/signal? . 66
channel-request/subsystem-name 67
channel-request/subsystem? 67
channel-request/window-change-columns 67
channel-request/window-change-height 67
channel-request/window-change-rows 67
channel-request/window-change-width 67
channel-request/window-change? 67
channel-request/x11-req-cookie 67
channel-request/x11-req-protocol 67
channel-request/x11-req-screen 68
channel-request/x11-req-single-connection?

. 67
channel-request/x11-req? 67
channel-request/xon-xoff-client-can-do? . . 68
channel-request/xon-xoff? 68
channel-request? . 64
channel-success? . 63
channel-window-adjust-amount 63
channel-window-adjust? . 62
clear-aes-schedule! . 21
clear-arcfour-keystream! 22
clear-blowfish-schedule! 23
close-ssh . 57

crc-32 . 24
crc-32-finish . 25
crc-32-init . 24
crc-32-self-test . 25
crc-32-update . 24
crc-32-width . 25
create-file . 17
crypt . 36
ctcp-message? . 48

D
debug-always-display? . 69
debug-language . 70
debug-message . 70
debug? . 69
decipher-certificate-signature 43
define-crc . 23, 24
deregister-userauth . 72
des! . 25
des-crypt . 26
des-key-bad-parity? . 25
development snapshots . 1
Diffie-Hellman . 26
disconnect-code . 68
disconnect-language . 69
disconnect-message . 69
disconnect? . 68
dorodango, package manager . 1
dsa-create-signature . 28
dsa-private->public . 28
dsa-private-key-from-bytevector 28
dsa-private-key-from-pem-file 28
dsa-private-key? . 28
dsa-public-key-length . 28
dsa-public-key? . 28
dsa-signature-from-bytevector 28
dsa-verify-signature . 28

E
ec* . 30
ec+ . 30
ec- . 30
ecdsa-create-signature . 31
ecdsa-private->public . 31
ecdsa-private-key-d . 31
ecdsa-private-key-from-bytevector 31
ecdsa-private-key-Q . 31
ecdsa-private-key? . 31
ecdsa-public-key-curve . 30
ecdsa-public-key-length . 31
ecdsa-public-key-Q . 31
ecdsa-public-key? . 30
ecdsa-sha-2-create-signature 32
ecdsa-sha-2-private-key-from-bytevector . . 32
ecdsa-sha-2-private-key? 32
ecdsa-sha-2-public-key? . 31

Index 88

ecdsa-sha-2-verify-signature 32
ecdsa-verify-signature . 31
elf-image-abi-version . 5
elf-image-ehsize . 6
elf-image-endianness . 4
elf-image-entry . 6
elf-image-flags . 6
elf-image-machine . 5
elf-image-os-abi . 4
elf-image-phentsize . 6
elf-image-phnum . 6
elf-image-phoff . 6
elf-image-port . 4
elf-image-section-by-name 11
elf-image-sections . 11
elf-image-shentsize . 6
elf-image-shnum . 6
elf-image-shoff . 6
elf-image-shstrndx . 6
elf-image-symbols . 11
elf-image-type . 5
elf-image-version . 6
elf-image-word-size . 4
elf-image? . 4
elf-machine-names . 6
elf-section-addr . 8
elf-section-addralign . 8
elf-section-entsize . 8
elf-section-flags . 7
elf-section-info . 8
elf-section-link . 8
elf-section-name . 7
elf-section-offset . 8
elf-section-size . 8
elf-section-type . 7
elf-section? . 7
elf-segment-align . 9
elf-segment-filesz . 9
elf-segment-flags . 9
elf-segment-memsz . 9
elf-segment-offset . 9
elf-segment-paddr . 9
elf-segment-type . 8
elf-segment-vaddr . 9
elf-segment? . 8
elf-symbol-binding . 10
elf-symbol-info . 11
elf-symbol-name . 10
elf-symbol-other . 10
elf-symbol-shndx . 10
elf-symbol-size . 10
elf-symbol-type . 10
elf-symbol-value . 10
elf-symbol? . 10
elliptic-curve-a . 29
elliptic-curve-b . 29
elliptic-curve-G . 29
elliptic-curve-h . 29

elliptic-curve-n . 29
elliptic-curve=? . 30
elliptic-point->bytevector 30
elliptic-prime-curve-p . 29
elliptic-prime-curve? . 29
end-of-central-directory-comment 19
end-of-central-directory-disk 19
end-of-central-directory-entries 19
end-of-central-directory-start-disk 19
end-of-central-directory-total-entries . . . 19
end-of-central-directory? 19
entropy . 20
expand-aes-key . 20
expand-arcfour-key . 22
expand-blowfish-key . 22
expt-mod . 27
extended-prefix? . 48
extract-file . 16
extract-gzip . 12
extract-to-port . 16

F
file-record-compressed-size 17
file-record-compression-method 17
file-record-crc-32 . 17
file-record-date . 17
file-record-extra . 18
file-record-filename . 18
file-record-flags . 17
file-record-minimum-version 17
file-record-uncompressed-size 18
file-record? . 17
fish-decrypt-message . 50
fish-encrypt-message . 50
fish-generate-key . 50
fish-key-init? . 50
fish-message? . 50
flush-ssh-output . 57
format-message-and-verify 47
format-message-raw . 46
format-message-with-whitewash 47
format-size . 78

G
get-central-directory . 16
get-delimited-base64 . 80
get-gzip-header . 13
get-instruction . 43, 44
get-openpgp-detached-signature/ascii 35
get-openpgp-keyring . 34
get-openpgp-keyring/keyid 34
get-openpgp-packet . 34
get-ssh . 57
get-ssh-public-key . 41
get-unpack . 78
global-request-type . 58

Index 89

global-request-want-reply? 59
global-request/cancel-tcpip-forward-address

. 59
global-request/cancel-tcpip-forward-port

. 59
global-request/cancel-tcpip-forward? 59
global-request/tcpip-forward-address 59
global-request/tcpip-forward-port 59
global-request/tcpip-forward? 59
global-request? . 58
gzip-comment . 13
gzip-extra-data . 13
gzip-filename . 13
gzip-method . 13
gzip-mtime . 13
gzip-os . 13
gzip-text? . 13

H
Hello World, example . 1
hmac-md5 . 34
https . 76

I
identification-comments . 54
identification-protocol-version 54
identification-software-version 54
ignore? . 69
inflate . 13
integer->elliptic-point . 30
invalid-opcode? . 43
ipv4->string . 80
ipv6->string . 81
irc-format-condition? . 48
irc-match? . 48
irc-parse-condition? . 47
is-elf-image? . 3
is-gzip-file? . 12
is-xz-file? . 15
isupport-defaults . 48

K
kexinit-compression-algorithms-client-to-

server . 71
kexinit-compression-algorithms-server-to-

client . 71
kexinit-cookie . 70
kexinit-encryption-algorithms-client-to-

server . 70
kexinit-encryption-algorithms-server-to-

client . 71
kexinit-first-kex-packet-follows? 71
kexinit-kex-algorithms . 70
kexinit-languages-client-to-server 71
kexinit-languages-server-to-client 71

kexinit-mac-algorithms-client-to-server . . 71
kexinit-mac-algorithms-server-to-client . . 71
kexinit-reserved . 71
kexinit-server-host-key-algorithms 70
kexinit? . 70
key-exchange-packet? . 57

M
make-channel-close . 63
make-channel-data . 63
make-channel-eof . 63
make-channel-extended-data 63
make-channel-failure . 64
make-channel-open-confirmation 62
make-channel-open-failure 62
make-channel-open/direct-tcpip 60
make-channel-open/forwarded-tcpip 61
make-channel-open/session 61
make-channel-open/x11 . 61
make-channel-request/break 64
make-channel-request/env 64
make-channel-request/exec 64
make-channel-request/exit-signal 65
make-channel-request/exit-status 65
make-channel-request/pty-req 65
make-channel-request/shell 66
make-channel-request/signal 66
make-channel-request/subsystem 67
make-channel-request/window-change 67
make-channel-request/x11-req 67
make-channel-request/xon-xoff 68
make-channel-success . 63
make-channel-window-adjust 62
make-debug . 69
make-dh-secret . 27
make-disconnect . 68
make-dsa-private-key . 28
make-dsa-public-key . 27
make-ecdsa-private-key . 31
make-ecdsa-public-key . 30
make-ecdsa-sha-2-private-key 32
make-ecdsa-sha-2-public-key 31
make-elf-image . 3
make-elf-section . 7
make-elf-segment . 8
make-elf-symbol . 9
make-elliptic-prime-curve 29
make-fish-key . 50
make-global-request . 58
make-global-request/cancel-tcpip-forward

. 59
make-global-request/tcpip-forward 59
make-gzip-input-port . 12
make-ignore . 69
make-inflater . 14
make-kexinit . 70
make-md5 . 33

Index 90

make-newkeys . 71
make-otr-state . 50
make-random-bytevector . 32
make-request-failure . 60
make-request-success . 59
make-rsa-private-key . 37
make-rsa-public-key . 37
make-service-accept . 70
make-service-request . 70
make-sliding-buffer . 14
make-ssh-client . 56
make-ssh-server . 56
make-unimplemented . 69
make-userauth-banner . 73
make-userauth-failure . 73
make-userauth-password-changereq 74
make-userauth-public-key-ok 75
make-userauth-request . 72
make-userauth-request/password 73
make-userauth-request/password-change 74
make-userauth-request/public-key 75
make-userauth-request/public-key-query . . . 74
make-userauth-success . 73
make-xz-input-port . 15
make-zlib-input-port . 19
md5 . 33
md5->bytevector . 33
md5->string . 33
md5-96-copy-hash! . 33
md5-96-hash=? . 34
md5-clear! . 33
md5-copy . 33
md5-copy-hash! . 33
md5-finish . 33
md5-finish! . 33
md5-hash=? . 33
md5-length . 33
md5-update! . 33
MODP groups . 27

N
newkeys? . 71

O
open-elf-image . 3
open-gzip-file-input-port 12
open-xz-file-input-port . 15
openpgp-format-fingerprint 36
openpgp-public-key-fingerprint 36
openpgp-public-key-id . 36
openpgp-public-key-subkey? 36
openpgp-public-key-value 36
openpgp-public-key? . 36
openpgp-signature-creation-time 35
openpgp-signature-expiration-time 35
openpgp-signature-hash-algorithm 35

openpgp-signature-issuer 35
openpgp-signature-public-key-algorithm . . . 35
openpgp-signature? . 35
openpgp-user-attribute? . 36
openpgp-user-id-value . 35
openpgp-user-id? . 35
otr-authenticate! . 51
otr-empty-queue! . 51
otr-format-session-id . 53
otr-hash-public-key . 52
otr-message? . 50
otr-send-encrypted! . 51
otr-send-symmetric-key-request! 53
otr-state-mss . 53
otr-state-mss-set! . 53
otr-state-our-dsa-key . 52
otr-state-our-instance-tag 53
otr-state-secure-session-id 52
otr-state-symmetric-key . 53
otr-state-their-dsa-key . 52
otr-state-version . 53
otr-tag . 53
otr-update! . 51

P
pack . 78
pack! . 78
parse-channel-mode . 49
parse-isupport . 48
parse-message . 45
parse-message-bytevector 46
permute-key . 26
port-ascii-armored? . 34
preferred-compression-algorithms-client-

>server . 55
preferred-compression-algorithms-server-

>client . 55
preferred-encryption-algorithms-client-

>server . 55
preferred-encryption-algorithms-server-

>client . 55
preferred-kex-algorithms 55
preferred-languages-client->server 56
preferred-languages-server->client 56
preferred-mac-algorithms-client->server . . 55
preferred-mac-algorithms-server->client . . 55
preferred-server-host-key-algorithms 55
prefix-nick . 48
prefix-split . 48
process-key-exchange-packet 58
put-delimited-base64 . 79
put-ssh . 57

R
randomness . 20
register-connection . 58

Index 91

register-transport . 68
register-userauth . 72
register-userauth-password 72
register-userauth-public-key 72
release tarballs . 1
request-failure? . 60
request-success-data . 60
request-success? . 60
reverse-aes-schedule . 21
reverse-blowfish-schedule 23
rsa-decrypt . 39
rsa-decrypt/blinding . 39
rsa-encrypt . 38
rsa-pkcs1-decrypt . 39
rsa-pkcs1-decrypt-digest 39
rsa-pkcs1-decrypt-signature 39
rsa-pkcs1-encrypt . 39
rsa-private->public . 38
rsa-private-key-coefficient 38
rsa-private-key-d . 38
rsa-private-key-exponent1 38
rsa-private-key-exponent2 38
rsa-private-key-from-bytevector 38
rsa-private-key-from-pem-file 38
rsa-private-key-modulus . 38
rsa-private-key-n . 38
rsa-private-key-prime1 . 38
rsa-private-key-prime2 . 38
rsa-private-key-private-exponent 38
rsa-private-key-public-exponent 38
rsa-private-key? . 38
rsa-public-key-byte-length 37
rsa-public-key-e . 37
rsa-public-key-from-bytevector 37
rsa-public-key-length . 37
rsa-public-key-modulus . 37
rsa-public-key-n . 37
rsa-public-key-public-exponent 37
rsa-public-key? . 37

S
security, warning . 20
service-accept-name . 70
service-accept? . 70
service-request-name . 70
service-request? . 70
SHA-1 . 40
SHA-224 . 40
SHA-256 . 40
SHA-384 . 40
SHA-512 . 40
sign-userauth-request/public-key 75
sliding-buffer-drain! . 14
sliding-buffer-dup! . 15
sliding-buffer-init! . 14
sliding-buffer-put-u8! . 15
sliding-buffer-read! . 14

sliding-buffer? . 14
Socialist Millionaires’ Protocol 51
ssh-conn-host-key . 56
ssh-conn-peer-identification 56
ssh-conn-peer-kexinit . 56
ssh-conn-registrar . 56
ssh-conn-session-id . 56
ssh-debugging . 54
ssh-debugging-port . 54
ssh-error . 57
ssh-key-exchange . 56
ssh-key-re-exchange . 57
ssh-public-key->bytevector 41
ssh-public-key-algorithm 41
ssh-public-key-fingerprint 41
ssh-public-key-random-art 41
SSL . 76
start-tls . 76
string->ipv4 . 81
string->ipv6 . 81
string-downcase-irc . 48
string-irc=? . 48
string-upcase-irc . 48
subbytevector . 81
supported-compression-method? 17

T
tcp-connect . 76
tdea-cbc-decipher! . 26
tdea-cbc-encipher! . 26
tdea-decipher! . 26
tdea-encipher! . 26
tdea-permute-key . 26
terminal-modes->bytevector 66
TLS . 76
tls-connect . 76
Triple Data Encryption Algorithm 25
trusted certificate . 42

U
uint->bytevector . 82
unimplemented-sequence-number 69
unimplemented? . 69
unpack . 77
unsupported-error? . 17
userauth-banner-language 73
userauth-banner-message . 73
userauth-banner? . 73
userauth-failure-can-continue 73
userauth-failure-partial? 73
userauth-failure? . 73
userauth-password-changereq-language 74
userauth-password-changereq-prompt 74
userauth-password-changereq? 74
userauth-public-key-ok-algorithm 75
userauth-public-key-ok-key 75

Index 92

userauth-public-key-ok? . 75
userauth-request-method . 72
userauth-request-service 72
userauth-request-username 72
userauth-request/password-change-new 74
userauth-request/password-change-old 74
userauth-request/password-change? 74
userauth-request/password-value 74
userauth-request/password? 74
userauth-request/public-key-algorithm 75
userauth-request/public-key-key 75
userauth-request/public-key-query-algorithm

. 74
userauth-request/public-key-query-key 74

userauth-request/public-key-query? 74
userauth-request/public-key? 75
userauth-request? . 72
userauth-success? . 73

V
validate-certificate-path 42
verify-openpgp-signature 35
VisualHostKey . 41

X
X.509 certificate . 41

	Getting started
	Installation
	Usage
	Conflicting names

	Library reference
	Executable file format utilities
	Parsers for the Executable and Linkable Format (ELF)

	Data decompression
	Mark Adler's Adler-32 checksum
	GZIP custom input port
	Decompress DEFLATE'd data
	A circular buffer attached to a data sink
	XZ custom input port
	ZIP archive reader/writer
	ZLIB custom input port

	Cryptographic primitives
	Advanced Encryption Standard
	ARCFOUR stream cipher
	The Blowfish Cipher
	Cyclic Redundancy Codes
	Data Encryption Standard
	Diffie-Hellman key exchange
	Digital Signature Algorithm
	Elliptic Curve Cryptography
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Entropy and randomness
	Message-Digest algorithm 5
	OpenPGP signature verification
	Password hashing
	RSA public key encryption and signatures
	Secure Hash Algorithm 1
	Secure Hash Algorithm 2
	SSH public key format conversion
	X.509 Public-Key Infrastructure

	Machine code disassemblers
	Intel 8080/8085 disassembler
	Freescale 68HC12 disassembler
	MIPS II disassembler
	Intel x86-16/32/64 disassembler

	Network protocols
	Internet Relay Chat
	Blowcrypt/FiSH encryption for IRC
	Off-the-Record Messaging
	Secure Shell (SSH)
	Secure Shell Connection Protocol
	Secure Shell Transport Layer Protocol
	Secure Shell Authentication Protocol

	Basic TCP client connections
	Transport Layer Security (simple interface)

	Binary structure utilities
	Binary structure packing and unpacking

	Textual structure utilities
	Base64 encoding and decoding
	Internet address parsing and formatting

	Data types and utilities
	Bytevector utilities

	Demo programs
	checksig -- verifies OpenPGP signature files
	checksum -- computes CRCs and message digests
	fcdisasm -- full-color disassembler
	honingsburk -- simple Secure Shell honey pot
	meircbot -- the minimum-effort irc bot
	secsh-client -- manually operated Secure Shell client
	sunzip -- zip archive extractor
	szip -- zip archive creator
	tarinfo -- tarball information lister
	tls-client -- trivial HTTPS client

	Index

